## Hyperbolic Geometry



#### Recall: Euclid's Postulates for Euclidean Geometry

- There exists a line through distinct points P and Q.
- Line segments can be extended.
- Circles exist.
- All right angles are congruent.

#### Euclid's Fifth Postulate

For every line  $\ell$  and a point P that does not lie on  $\ell$ , there exists an unique line m through P and parallel to  $\ell$ .

**Note:** There are two ways that we can change this postulate:

- replace "an unique" with
- replace "an unique" with

#### Hyperbolic Fifth Postulate

Given a line  $\ell$  and a point P not on  $\ell$ , there are **many** lines through P and parallel to  $\ell$ .

\*\*Note: In this context, parallel MEANS

#### Poincaré Model Of A Hyperbolic Geometry

Given a circle H with center O:

• The points of the geometry are all the points that are

- Lines of the geometry are of two types:
  - diameters;
  - parts of circles that are

## Poincaré Model



#### Hyperbolic Distance

The hyperbolic distance between two hyperbolic points A and B is determined by a ratio of distances between A and B and the points P and Q on the hyperbolic horizon on the unique line joining A and B.



#### Construction 1: Hyperbolic Lines Through Center O of H

All hyperbolic lines that pass through O are



#### Construction 1: Circle Inversion



#### Construction 1: Hyperbolic Lines Through $A \neq O$

**Definition:** The perpendicular bisector of the line Ainv(A) is called the

All of the lines through A are:

- the diameter that passes through A;
- the part of the interior to H of a circle that has center on  $\ell_A$  and passes through

## Construction 1: Hyperbolic Lines Through A



## Hyperbolic Lines through A



### Construction 2: Hyperbolic Line Passing Through A & B



## Alternate Construction 2: Hyperbolic Line Through A & B



# Construction 3: Intersecting Hyperbolic Lines Given 90° Angle



Construction 3: Intersecting Hyperbolic Lines Given An

Angle





## Construction 4: An Equilateral Triangle



## Sum Of The Angles Of A Triangle

In a hyperbolic plane, the sum of the angles of a triangle is



QUESTIONS???