Problem Set 9

Due: 9:00 a.m. on Wednesday, March 23

Instructions: Carefully read Sections 3.4 and 3.5 of the textbook. Submit your solutions to the following problems. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: From pages 180-191 of the textbook.

1. Section $3.4 \# 3.14$ parts (bi), (c) and (d), pages 183-184
2. Section $3.4 \# 3.15$ parts (b) and (c), page 184
3. Section $3.4 \# 3.17(\mathrm{a})$, page 184
4. Section $3.5 \# 3.22(\mathrm{~b})$, page 186
5. A Mersenne prime is a prime integer of the form $2^{n}-1$ for some integer n. Mersenne primes are named after the French monk Marin Mersenne (1588-1648). It is still unknown whether there are infinitely many Mersenne primes. In Fall 2008, a research team at UCLA announced the discovery of a 13 million digit prime number - it is a Mersenne prime with $n=43,112,609$. You can find a list of Mersenne primes at www.mersenne.org/prime.htm.
(a) Factor each of the numbers $2^{n}-1$ for $n=2,3, \ldots, 10$. Which ones are Mersenne primes?
(b) Let p be a prime. Must $2^{p}-1$ also be a prime integer? Either prove your answer or give a counter-example.
(c) Prove that if $2^{n}-1$ is a Mersenne prime, then n must also be a prime integer. Hint: Note that $x^{c d}-1=\left(x^{c}\right)^{d}-1^{d}$ for any integer x and positive integers c and d and recall the factorization of $x^{n}-y^{n}$ for any integers x, y and $n \geq 1$.

Note: You may use Maxima for tedious computations. If you do so, then please still show sufficient work. The following commands may be helpful:

- to find $a(\bmod n)$ type the command $\bmod (a, n)$;
- to find the greatest common divisor of two positive integers a and b type the command $\operatorname{gcd}(a, b)$;
- to find the prime factorization of a positive integer n type the command factor (n).

