Problem Set 8
 Due: 9:00 a.m. on Wednesday, March 9

Instructions: Carefully read Sections 3.1, 3.2 and 3.3 of the textbook. Submit your solutions to the following problems. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: From pages 180-191 of the textbook.

1. Section $3.1 \# 3.1$ parts (a) and (e), page 180
2. Let p and q be distinct primes and let e and d be positive integers such that

$$
d e \equiv 1 \quad(\bmod (p-1)(q-1)) .
$$

Suppose further that c is an integer such that p divides c but q does not divide c. Prove that

$$
x \equiv c^{d} \quad(\bmod p q)
$$

is a solution to the congruence

$$
x^{e} \equiv c \quad(\bmod p q) .
$$

You may use the general fact that if $s t \equiv s u(\bmod n)$ then $t \equiv u(\bmod n / d)$ where $d=$ $\operatorname{gcd}(s, n)$.
3. Section $3.2 \# 3.7$, page 182
4. Section 3.2 \#3.9(b), page 182
5. Section $3.2 \# 3.11$, pages $182-183$; you may assume that g is chosen such that it is not divisible by p or q.
6. Section $3.3 \# 3.12(\mathrm{~b})$, page 183

Note: You may use Maxima for tedious computations. If you do so, then please still show sufficient work. The following commands may be helpful:

- to find $a(\bmod n)$ type the command $\bmod (a, n)$;
- to find the greatest common divisor of two positive integers a and b type the command $\operatorname{gcd}(a, b)$;
- to find the prime factorization of a positive integer n type the command factor (n).

