Problem Set 13

Due: 9:00 a.m. on Wednesday, April 20

Instructions: Carefully read Sections 6.3 and 6.4 of the textbook. Submit your solutions to the following problems. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: From pages 361-371 of the textbook.

1. Section $6.3 \# 6.8$, page 362
2. Let E be the elliptic curve with defining equation $y^{2}=x^{3}+23 x+13$ over \mathbb{F}_{83}. Let $P=$ $(24,14) \in E\left(\mathbb{F}_{83}\right)$. Use the Double-and-Add Algorithm to find $19 P$.
3. Alice and Bob agree to use elliptic Diffie-Hellman key exchange with the prime $p=2671$, elliptic curve $E: y^{2}=x^{3}+171 x+853$ and point $P=(1980,431) \in E\left(\mathbb{F}_{2671}\right)$.
(a) Alice sends Bob the point $Q_{A}=(2110,543)$. Bob decides to use the secret multiplier $n_{B}=9$. What point should Bob send to Alice? What is their secret shared value?
(b) Alice and Bob decide to exchange a new piece of secret information, but this time Alice sends Bob only the x-coordinate $x_{A}=2$ of her point Q_{A}. Bob decides to use the secret multiplier $n_{B}=3$. What single number modulo p should Bob send to Alice? What is their secret shared value?
4. Section 6.4 \#6.17(a), page 364

Note: You may use Maxima for tedious computations. If you do so, then please still show sufficient work. The following commands may be helpful:

- to find $a(\bmod n)$ type the command $\bmod (a, n)$;
- to find the greatest common divisor of two positive integers a and b type the command $\operatorname{gcd}(a, b)$;
- to find the prime factorization of a positive integer n type the command factor (n);
- to find the inverse of n modulo m (where $\operatorname{gcd}(n, m)=1$), type the command inv_mod (n, m).

