Problem Set 13 Due: 9:00 a.m. on Wednesday, April 20

Instructions: Carefully read Sections 6.3 and 6.4 of the textbook. Submit your solutions to the following problems. Be sure to adhere to the expectations outlined on the sheet *Guidelines for Problem Sets.* Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: From pages 361–371 of the textbook.

- 1. Section 6.3 # 6.8, page 362
- 2. Let *E* be the elliptic curve with defining equation $y^2 = x^3 + 23x + 13$ over \mathbb{F}_{83} . Let $P = (24, 14) \in E(\mathbb{F}_{83})$. Use the Double-and-Add Algorithm to find 19*P*.
- 3. Alice and Bob agree to use elliptic Diffie-Hellman key exchange with the prime p = 2671, elliptic curve $E: y^2 = x^3 + 171x + 853$ and point $P = (1980, 431) \in E(\mathbb{F}_{2671})$.
 - (a) Alice sends Bob the point $Q_A = (2110, 543)$. Bob decides to use the secret multiplier $n_B = 9$. What point should Bob send to Alice? What is their secret shared value?
 - (b) Alice and Bob decide to exchange a new piece of secret information, but this time Alice sends Bob only the x-coordinate $x_A = 2$ of her point Q_A . Bob decides to use the secret multiplier $n_B = 3$. What single number modulo p should Bob send to Alice? What is their secret shared value?
- 4. Section 6.4 #6.17(a), page 364

Note: You may use Maxima for tedious computations. If you do so, then please still show sufficient work. The following commands may be helpful:

- to find $a \pmod{n}$ type the command mod(a, n);
- to find the greatest common divisor of two positive integers a and b type the command gcd(a, b);
- to find the prime factorization of a positive integer n type the command factor(n);
- to find the inverse of n modulo m (where gcd(n,m) = 1), type the command inv_mod(n,m).