Problem Set 13 Due: Wednesday, May 6

- 1. A field K of characteristic p > 0 is called *perfect* if every element of K is a p^{th} power in K. Suppose K is a field of characteristic p > 0 which is not a perfect field. Show that there exist irreducible inseparable polynomials over K and conclude that there exist inseparable finite field extensions of K.
- 2. Let K be a splitting field for $f(x) = (x^2 2)(x^2 3)(x^2 5)$ over \mathbb{Q} .
 - (a) Prove that the Galois group of the extension $\mathbb{Q} \subseteq K$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
 - (b) Determine all the intermediate fields $\mathbb{Q} \subseteq F \subseteq K$.
- 3. Let K be a splitting field for $f(x) = x^4 14x^2 + 9$ over \mathbb{Q} . Show that the Galois group of the extension $\mathbb{Q} \subseteq K$ is isomorphic to the Klein 4-group (i.e., $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$).