Problem Set 11 Due: Wednesday, April 22

1. Suppose $F=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ where $\alpha_{i}^{2} \in \mathbb{Q}$ for $i=1,2, \ldots, n$. Prove that $\sqrt[3]{2} \notin F$.
2. Using the following steps, determine the degree of $\beta:=1+\sqrt[3]{2}+\sqrt[3]{4}$ over \mathbb{Q}.
(a) Let $\alpha=\sqrt[3]{2}$. Show that $\beta \in \mathbb{Q}(\alpha)$.
(b) Find $[\mathbb{Q}(\alpha): \mathbb{Q}]$.
(c) Explain why $[\mathbb{Q}(\beta): \mathbb{Q}]$ divides $[\mathbb{Q}(\alpha): \mathbb{Q}]$.
(d) Show that $[\mathbb{Q}(\beta): \mathbb{Q}] \neq 1$.
(e) What is the degree of β over \mathbb{Q} ?
3. Let $\varphi: K \rightarrow L$ be a field extension. Assume that L is algebraically closed, and let $F=\{u \in L \mid u$ is algebraic over $K\}$. Show that F is an algebraic closure of K.
4. Let K be a finite field. Show that K is not algebraically closed. (Hint: Let $K=$ $\left\{a_{1}, \ldots, a_{n}\right\}$ with $a_{1} \neq 0$ and consider $f=a_{1}+\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right) \in K[x]$.)
