Problem Set 11 Due: Wednesday, April 22

- 1. Suppose $F = \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_n)$ where $\alpha_i^2 \in \mathbb{Q}$ for $i = 1, 2, \dots, n$. Prove that $\sqrt[3]{2} \notin F$.
- 2. Using the following steps, determine the degree of $\beta := 1 + \sqrt[3]{2} + \sqrt[3]{4}$ over \mathbb{Q} .
 - (a) Let $\alpha = \sqrt[3]{2}$. Show that $\beta \in \mathbb{Q}(\alpha)$.
 - (b) Find $[\mathbb{Q}(\alpha) : \mathbb{Q}].$
 - (c) Explain why $[\mathbb{Q}(\beta) : \mathbb{Q}]$ divides $[\mathbb{Q}(\alpha) : \mathbb{Q}]$.
 - (d) Show that $[\mathbb{Q}(\beta) : \mathbb{Q}] \neq 1$.
 - (e) What is the degree of β over \mathbb{Q} ?
- 3. Let $\varphi : K \to L$ be a field extension. Assume that L is algebraically closed, and let $F = \{u \in L \mid u \text{ is algebraic over } K\}$. Show that F is an algebraic closure of K.
- 4. Let K be a finite field. Show that K is not algebraically closed. (*Hint:* Let $K = \{a_1, \ldots, a_n\}$ with $a_1 \neq 0$ and consider $f = a_1 + (x a_1)(x a_2) \cdots (x a_n) \in K[x]$.)