Problem Set 10 Due: Wednesday, April 15

1. Let $p(x)=x^{3}+9 x+6$.
(a) Show that $p(x)$ is irreducible in $\mathbb{Q}[x]$.
(b) Let θ be a root of $p(x)$. Find the inverse of $1+\theta$ in $\mathbb{Q}(\theta)$.
2. Show that $\theta=\sqrt{1+3 \sqrt{3}}$ is algebraic over \mathbb{Q} of degree 4 .
3. Prove that $f(x)=x^{3}-3$ is irreducible over the field $F=\mathbb{Q}(i)$.
4. Let F be a field.
(a) Prove that an element α is algebraic over F if and only if the simple extension $F \subseteq F(\alpha)$ is finite.
(b) Prove that if the field extension $F \subseteq K$ is finite, then it is algebraic.
(c) Assume that $[F(\alpha): F]$ is odd. Prove that α^{2} is algebraic of finite degree over F and that $F(\alpha)=F\left(\alpha^{2}\right)$.
