Problem Set 10 Due: Wednesday, April 15

- 1. Let $p(x) = x^3 + 9x + 6$.
 - (a) Show that p(x) is irreducible in $\mathbb{Q}[x]$.
 - (b) Let θ be a root of p(x). Find the inverse of $1 + \theta$ in $\mathbb{Q}(\theta)$.
- 2. Show that $\theta = \sqrt{1 + 3\sqrt{3}}$ is algebraic over \mathbb{Q} of degree 4.
- 3. Prove that $f(x) = x^3 3$ is irreducible over the field $F = \mathbb{Q}(i)$.
- 4. Let F be a field.
 - (a) Prove that an element α is algebraic over F if and only if the simple extension $F \subseteq F(\alpha)$ is finite.
 - (b) Prove that if the field extension $F \subseteq K$ is finite, then it is algebraic.
 - (c) Assume that $[F(\alpha) : F]$ is odd. Prove that α^2 is algebraic of finite degree over F and that $F(\alpha) = F(\alpha^2)$.