MATH 721, Algebra II
Exercises 5
Due Wed 18 Feb

Exercise 1. Let R be a commutative ring with identity, and let M be a unital R-module with a fixed R-module homomorphism $\phi: M \rightarrow M$. Prove that M has a well-defined $R[x]$-module structure where $x m:=\phi(m)$ for all $m \in M$.

Exercise 2. Let k be a field, and let A, P be $n \times n$ matrices with entries in k. Assume that P is invertible, and let $\lambda \in k$. Set $A^{\prime}:=P A P^{-1}$.

Recall that λ is an eigenvalue for A if there is a non-zero vector $v \in k^{n}$ such that $A v=\lambda v$; in this event, v is an eigenvector of A associated to λ. The eigenspace of A associated to λ is

$$
E_{\lambda}(A):=\{\text { eigenvectors of } A \text { associated to } \lambda\} \cup\{0\} .
$$

(a) Prove that v is an eigenvector of A associated to λ if and only if $P v$ is an eigenvector of A^{\prime} associated to λ.
(b) Prove that λ is an eigenvalue for A if and only if λ is an eigenvalue for A^{\prime}.
(c) Prove that for all $\lambda \in k$, the set $E_{\lambda}(A)$ is a subspace of k^{n}.
(d) Prove that for all $\lambda \in k$, there is a k-linear isomorphism $E_{\lambda}(A) \cong E_{\lambda}\left(A^{\prime}\right)$.

Exercise 3. Find the rational canonical form of the following matrix in $\operatorname{Mat}_{3 \times 3}(\mathbb{R})$.

$$
\left(\begin{array}{lll}
2 & 0 & 0 \\
1 & 2 & 0 \\
2 & 5 & 3
\end{array}\right)
$$

