MATH 721, Algebra II Exercises 5 Due Wed 18 Feb

Exercise 1. Let R be a commutative ring with identity, and let M be a unital R-module with a fixed R-module homomorphism $\phi: M \to M$. Prove that M has a well-defined R[x]-module structure where $xm := \phi(m)$ for all $m \in M$.

Exercise 2. Let k be a field, and let A, P be $n \times n$ matrices with entries in k. Assume that P is invertible, and let $\lambda \in k$. Set $A' := PAP^{-1}$.

Recall that λ is an *eigenvalue* for A if there is a non-zero vector $v \in k^n$ such that $Av = \lambda v$; in this event, v is an *eigenvector* of A associated to λ . The *eigenspace* of A associated to λ is

 $E_{\lambda}(A) := \{ \text{eigenvectors of } A \text{ associated to } \lambda \} \cup \{ 0 \}.$

- (a) Prove that v is an eigenvector of A associated to λ if and only if Pv is an eigenvector of A' associated to λ .
- (b) Prove that λ is an eigenvalue for A if and only if λ is an eigenvalue for A'.
- (c) Prove that for all $\lambda \in k$, the set $E_{\lambda}(A)$ is a subspace of k^n .
- (d) Prove that for all $\lambda \in k$, there is a k-linear isomorphism $E_{\lambda}(A) \cong E_{\lambda}(A')$.

Exercise 3. Find the rational canonical form of the following matrix in $Mat_{3\times 3}(\mathbb{R})$.

$$\begin{pmatrix}
2 & 0 & 0 \\
1 & 2 & 0 \\
2 & 5 & 3
\end{pmatrix}$$