MATH 721, Algebra II
Exercises 3
Due Wed 04 Feb
Throughout this homework set, let R be a commutative ring with identity, and let M be an R-module.

Exercise 1. Let $\varphi: R \rightarrow S$ be a homomorphism of commutative rings with identity. Prove that the R-module $S \otimes_{R} M$ has a well-defined S-module structure given by $s\left(s^{\prime} \otimes m\right):=\left(s s^{\prime}\right) \otimes m$. In particular, if $U \subseteq R$ is multiplicatively closed, then $\left(U^{-1} R\right) \otimes_{R} M$ has a well-defined $U^{-1} R$-module structure given by

$$
\frac{r}{u}\left(\frac{r^{\prime}}{u^{\prime}} \otimes m\right):=\frac{r r^{\prime}}{u u^{\prime}} \otimes m
$$

Exercise 2. Let $U \subseteq R$ be a multiplicatively closed subset. Prove that the R module isomorphism $g:\left(U^{-1} R\right) \otimes_{R} M \rightarrow U^{-1} M$ given by $(r / u) \otimes m \mapsto(r m) / u$ is a $U^{-1} R$-module isomorphism.

Exercise 3. Prove that the following conditions are equivalent.
(i) $M=0$.
(ii) For every multiplicatively closed subset $U \subseteq R$, we have $U^{-1} M=0$.
(iii) For every prime ideal $\mathfrak{p} \subset R$, we have $M_{\mathfrak{p}}=0$.
(iv) For every maximal ideal $\mathfrak{m} \subset R$, we have $M_{\mathfrak{m}}=0$.

Hint: For the implication (iv) \Longrightarrow (i), suppose that $0 \neq x \in M$. Then there is an ideal $I \subset R$ such that $0 \neq R / I \cong R x \subseteq M$. Let $\mathfrak{m} \subset R$ be a maximal ideal containing I, and show that there is a monomorphism $(R x)_{\mathfrak{m}} \rightarrow M_{\mathfrak{m}}$ with $(R x)_{\mathfrak{m}} \neq 0$.

