MATH 721, Algebra II
Exercises 2
Due Wed 28 Jan
Throughout this homework set, let R be a commutative ring with identity.

Exercise 1. Let M and N be R-modules. Prove that there is an R-module isomorphism $M \otimes_{R} N \cong N \otimes_{R} M$.

Exercise 2. Let M be an R-module, and let I be an ideal of R. Prove that there is an R-module isomorphism $(R / I) \otimes_{R} M \cong M / I M$.

Exercise 3. Let M be an R-module. Prove that the following conditions are equivalent.
(i) M is flat over R.
(ii) For every R-module monomorphism $g^{\prime}: N^{\prime} \rightarrow N$, the induced homomorphism $M \otimes_{R} g^{\prime}: M \otimes_{R} N^{\prime} \rightarrow M \otimes_{R} N$ is a monomorphism.
(iii) For every short exact sequence $0 \rightarrow N^{\prime} \xrightarrow{g^{\prime}} N \xrightarrow{g} N^{\prime \prime} \rightarrow 0$ of R-module homomorphisms, the induced sequence

$$
0 \rightarrow M \otimes_{R} N^{\prime} \xrightarrow{M \otimes_{R} g^{\prime}} M \otimes_{R} N \xrightarrow{M \otimes_{R} g} M \otimes_{R} N^{\prime \prime} \rightarrow 0
$$

is exact.

