Problem Set 4

Due: 9:00 a.m. on Thursday, December 15

Instructions: The following set of questions are based on the Course Project Presentations. Work one of the following problems which is not based on your own project. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solution by email to Dr. Cooper (as an attached pdf file).

Exercises:

1. Suppose I and J are Borel-fixed ideals in the polynomial $\operatorname{ring} S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Prove that $I \cap J$ and $I+J$ are Borel-fixed.
2. Let $S=k\left[x_{1}, x_{2}\right]$ and $R=k\left[x_{0}, x_{1}, x_{2}\right]$ with the standard grading.
(a) Does the given figure represent a complete intersection, rectangular complete intersection, or neither? If it is a complete intersection, determine the type. If it is a rectangular complete intersection, determine the type and list the bijections.

(b) Recall that C.I. $\left(d_{1}, d_{2}\right)$ denotes the set of all finite sets of distinct points in \mathbb{P}^{2} which are a complete intersection of type $\left\{d_{1}, d_{2}\right\}$. A key step in proving Proposition 4.2 of Megan's paper is the Cayley-Bacharach Theorem which relates the Hilbert functions of two subsets of complete intersections as follows: If $\mathbb{X} \in$ C.I. $\left(d_{1}, d_{2}\right)$ and $\mathbb{Y} \subseteq \mathbb{X}$, then

$$
\Delta H(\mathbb{X}, t)=\Delta H(\mathbb{Y}, t)+\Delta H\left(\mathbb{X} \backslash \mathbb{Y}, d_{1}+d_{2}-2-t\right) .
$$

(This generalizes in \mathbb{P}^{n}).
Use the Cayley-Bacharach Theorem to prove the Classical Cayley-Bacharach Theorem: If $\mathbb{X}=\left\{P_{1}, \ldots, P_{9}\right\}$ is the complete intersection of two cubics in \mathbb{P}^{2} (i.e., $\mathbb{X} \in$ C.I.(3,3)), then any cubic passing through 8 of the 9 points of \mathbb{X} must also pass through the remaining 9th point.
3. Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ and let $\mathbb{A}=\left\{a_{1}, \ldots, a_{n}\right\}$ be a sequence of degrees. Then an ideal L is said to be \mathbb{A} lex-plus-powers (or lex-plus-powers with respect to \mathbb{A}) if L is minimally generated by $x_{1}^{a_{1}}, \ldots, x_{n}^{a_{n}}$ and monomials $m_{1}, \ldots m_{p}$ such that whenever $r \in R_{\operatorname{deg}\left(m_{i}\right)}$ and $r \geq_{\operatorname{lex}} m_{i}$, then $r \in L$. We denote by $\mathcal{L}_{\mathcal{H}, \mathbb{A}}$ the unique \mathbb{A} lex-plus-powers ideal with Hilbert function \mathcal{H} (if such an ideal exists).

Suppose that $\mathbb{A} \leq \mathbb{B}$ for degree sequences $\mathbb{A}=\left\{a_{1}, \ldots, a_{n}\right\}$ and $\mathbb{B}=\left\{b_{1}, \ldots, b_{n}\right\}$, that \mathcal{H} is a Hilbert function, and that $\mathcal{L}_{\mathcal{H}, \mathbb{A}}$ exists. If \mathbb{L} is the sequence of degrees of the regular sequence of pure powers in the lex ideal attaining \mathcal{H} and $\mathbb{B} \leq \mathbb{L}$, then $\mathcal{L}_{\mathcal{H}, \mathbb{B}}$ exists.
Given $\mathbb{A}=\{3,3\}, \mathbb{B}=\{3,4\}$, and $\mathbb{L}=\{3,5\}$, where $\mathcal{H}=(1,2,3,2,1)$, and if we know $\mathcal{L}_{\mathcal{H}, \mathbb{A}}$ exists, find the ideal $\mathcal{L}_{\mathcal{H}, \mathbb{B}}$.
4.

Let $\Delta=$

Mentally check that Δ is a simplicial complex, then find/compute the following:
(a) $\operatorname{dim}(\Delta)$,
(b) I_{Δ},
(c) $f(\Delta)$,
(d) $H(k[\Delta], d)$ for $1 \leq d \leq 4$, using the proposition from Dylan's presentation (Proposition 12 in the paper), and
(e) $h(\Delta)$.

Is Δ Cohen-Macaulay?
5. Using the notation set in Corey's project, let $M \subseteq \mathcal{M}_{\underline{e}}$. Prove that M is an order ideal (of monomials) if and only if M is closed.

