Problem Set 2
 Due: 12:00 p.m. on Wednesday, October 5

Instructions: Work all of the following problems. A subset of the problems will be graded. Your grade will also reflect your participation in solution presentations. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: For this Problem Set, assume that all rings are non-zero and contain an identity. We also let k be a field and x_{0}, \ldots, x_{n} be indeterminates.

1. Find all possible Hilbert functions for 9 distinct points in \mathbb{P}^{2}. Pick one of the Hilbert functions \mathcal{H} and find a set $\mathbb{X} \subset \mathbb{P}^{2}$ of 9 distinct points in \mathbb{P}^{2} such that $H(\mathbb{X})=\mathcal{H}$. How do you know that the constructed set of points has the selected Hilbert function?
2. For parts (b) - (d) of this exercise use graded reverse-lexicographic order with $x_{1}>{ }_{\text {grevlex }}>$ $x_{2}>$ grevlex \cdots.
(a) Find a (3,4,5)-lex-plus-powers ideal $L \subset S=k\left[x_{1}, x_{2}, x_{3}\right]$ such that $H(S / L, 3)=9$ and $H(S / L, 6)=5$.
(b) Fix m to be a monomial of degree d in $S=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right] /\left(x_{1}^{5}, x_{2}^{4}, x_{3}^{4}, x_{4}^{3}\right)$. Recall that $L(m)$ denotes the set of all degree d monomials in S which are greater than or equal to m. Decompose $\left|L\left(x_{1}^{3} x_{2}^{3} x_{4}^{2}\right)\right|$ in terms of integers of the form $\left({ }_{l}^{e_{1}, \ldots, e_{j}}\right)$. Give an algebraic description of each term in the decomposition.
(c) Assume $I \subset S=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ is a homogeneous ideal containing $\left\{x_{1}^{5}, x_{2}^{4}, x_{3}^{4}, x_{4}^{3}\right\}$. If $H(S / I, 8)=17$, then what is the largest value possible for $H(S / I, 9)$?
(d) Assume that the EGH Conjecture is true. Can there be a homogeneous (3, 4, 4, 5)-ideal $I \subset S=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ with $H(S / I)=(1,4,10,18,24,29, \ldots)$?
3. A homogeneous ideal $I \subset R=k\left[x_{1}, x_{2}, x_{3}\right]$ has the following Betti diagram:

total	1	5	6	2
0	1	-	-	-
1	-	2	-	-
2	-	2	4	-
3	-	-	-	1
4	-	1	2	1

Find the minimal graded free resolution of R / I.

