Lab 9

Optimization, Newton's Method, Antiderivatives, and Area

1. Find the dimensions of the rectangle of maximum area that can be inscribed in a circle of radius 4.
2. A box of volume $72 \mathrm{~m}^{3}$ with square bottom and no top is constructed out of two different materials. The cost of the bottom is $\$ 40 / \mathrm{m}^{2}$ and the cost of the sides is $\$ 30 / \mathrm{m}^{2}$. Find the dimensions of the box that minimize total cost.
3. A box with no top is to be constructed from a piece of cardboard of sides A and B by cutting out squares of length h from the corners and folding up the sides. Find the value of h that maximizes the volume of the box if $A=15$ and $B=24$. What are the dimensions of this box?
4. Use Newton's Method to estimate $\sqrt[3]{25}$ to four decimal places.
5. Calculate the indefinite integral.
(a) $\int\left(4 x^{3}-2 x^{2}\right) d x$
(b) $\int \sin (4 x-9) d x$
(c) $\int e^{-4 x} d x$
(d) $\int 4 x^{-1} d x$
(e) $\int \frac{x^{3}+3 x-4}{x^{2}} d x$
(f) $\int 25 \sec ^{2}(3 z+1) d z$
6. Solve the differential equation with the given initial conditions.
(a) $\frac{d y}{d t}=3 t^{2}+\cos t, y(0)=12$
(b) $\frac{d y}{d x}=e^{-x}, y(0)=3$
(c) $\frac{d y}{d x}=x^{-1 / 2}, y(1)=1$
7. Find $f(t)$ if $f^{\prime \prime}(t)=1-2 t, f(0)=2$ and $f^{\prime}(0)=-1$.
8. A car traveling with velocity $24 \mathrm{~m} / \mathrm{s}$ begins to slow down at time $t=0$ with a constant deceleration of $a=-6 \mathrm{~m} / \mathrm{s}^{2}$. Find the velocity $v(t)$ at time t.
9. Calculate R_{5}, M_{5} and L_{5} for $f(x)=\left(x^{2}+1\right)^{-1}$ on the interval $[0,1]$.
10. Let A be the area under the graph of $f(x)=2 x^{2}-x+3$ over $[2,4]$. Find a formula for R_{N} and compute A as a limit.
