Lab 6
 Higher Derivatives, Trigonometric Functions, and the Chain Rule

1. Compute the derivative for each of the following functions.
(a) $y=\frac{t}{1+\sec t}$
(b) $y=\tan \left(t^{-3}\right)$
(c) $y=e^{4 t-t^{2}}$
(d) $y=\sin (2 x) \cos ^{2} x$
(e) $y=e^{\left(x^{3}+3 x+4\right)^{4}}$
(f) $y=\left(3 e^{3 x}+3 e^{-2}\right)^{4}$
(g) $y=\tan (\sqrt{1+\csc x})$
(h) $y=\cos (\cos (\cos (x)))$
2. Calculate $y^{\prime \prime}$ for each function y below.
(a) $y=12 x^{3}-5 x^{2}+3 x$
(b) $y=\sqrt{2 x+3}$
(c) $y=\tan \left(x^{2}\right)$
(d) $y=\sin ^{2}(4 x+9)$
3. Find a general formula for $f^{(n)}(x)$ where $f(x)=(x+2)^{-1}$.
4. Find a polynomial $f(x)$ that satisfies the equation

$$
x f^{\prime \prime}(x)+f(x)=x^{2} .
$$

5. Find $f^{\prime}(2)$ if $f(g(x))=e^{x^{2}}, g(1)=2$, and $g^{\prime}(1)=4$.
6. Find an equation of the tangent line to the curve $f(x)=\csc x-\cot x$ at the point $x=\pi / 4$.
7. A particle moves in a straight line with displacement $s(t)$, velocity $v(t)$, and acceleration $a(t)$.
(a) Show that

$$
a(t)=v(t) \frac{d v}{d s}
$$

(b) Explain the difference between the meanings of $\frac{d v}{d t}$ and $\frac{d v}{d s}$.
8. Recall that a function f is odd if $f(-x)=-f(x)$ for all x and even if $f(-x)=f(x)$ for all x. Prove that if f is an odd function, then f^{\prime} is an even function. Does a similar statement hold for even functions?

