Lab 6

Higher Derivatives, Trigonometric Functions, and the Chain Rule

1. Compute the derivative for each of the following functions.

(a)
$$y = \frac{e}{1 + \sec t}$$

(b) $y = \tan(t^{-3})$
(c) $y = e^{4t - t^2}$
(d) $y = \sin(2x)\cos^2 x$
(e) $y = e^{(x^3 + 3x + 4)^4}$
(f) $y = (3e^{3x} + 3e^{-2})^4$
(g) $y = \tan(\sqrt{1 + \csc x})$
(h) $y = \cos(\cos(\cos(x)))$

- 2. Calculate y'' for each function y below.
 - (a) $y = 12x^3 5x^2 + 3x$
 - (b) $y = \sqrt{2x+3}$
 - (c) $y = \tan(x^2)$
 - (d) $y = \sin^2(4x+9)$
- 3. Find a general formula for $f^{(n)}(x)$ where $f(x) = (x+2)^{-1}$.
- 4. Find a polynomial f(x) that satisfies the equation

$$xf''(x) + f(x) = x^2.$$

- 5. Find f'(2) if $f(g(x)) = e^{x^2}$, g(1) = 2, and g'(1) = 4.
- 6. Find an equation of the tangent line to the curve $f(x) = \csc x \cot x$ at the point $x = \pi/4$.
- 7. A particle moves in a straight line with displacement s(t), velocity v(t), and acceleration a(t).
 - (a) Show that

$$a(t) = v(t)\frac{dv}{ds}.$$

(b) Explain the difference between the meanings of $\frac{dv}{dt}$ and $\frac{dv}{ds}$.

8. Recall that a function f is odd if f(-x) = -f(x) for all x and even if f(-x) = f(x) for all x. Prove that if f is an odd function, then f' is an even function. Does a similar statement hold for even functions?