Lab 5

The Derivative: Definition, Product & Quotient Rules, and Rates of Change

- 1. Use the limit definition to calculate $\frac{dy}{dx}$ for the following functions.
 - (a) $y = 4 x^2$ (b) $y = \frac{1}{2 - x}$ (c) $y = \sqrt{2x + 1}$
- 2. Each limit represents a derivative f'(a). Find f(x) and a.

(a)
$$\lim_{h \to 0} \frac{\sqrt{1+h}-1}{h}$$

(b)
$$\lim_{x \to \pi} \frac{\sin x \cos x}{x-\pi}$$

3. Find the points on the graph of $f(x) = x^3 - 3x^2 + x + 4$ where the tangent line has slope 10.

- 4. Determine the points c (if any) such that f'(c) does not exist where f(x) = |x 5|.
- 5. Compute the derivative for each of the following functions.

(a)
$$y = t^{-7.3}$$

(b) $y = 3x^5 - 7x^2 + 4$
(c) $y = \frac{x+1}{x^2+1}$
(d) $y = te^{t-4}$

6. Use the following table of values to calculate the derivative of the given function at x = 2.

x	f(x)	g(x)	f'(x)	g'(x)
2	5	4	-3	9

- (a) y = 3f(x) 2g(x)(b) y = f(x)g(x)(c) $y = \frac{f(x)}{g(x)}$
- 7. A stone is shot with a sling shot vertically upward with an initial velocity of 50 m/s from an initial height of 10 m.
 - (a) Find the velocity at t = 2 and at t = 7. Explain the change in sign.
 - (b) What is the stone's maximum height and when does it reach that height?

8. Match the graph of each function in (1) - (4) with the graph of its derivative in (A) - (D). Record your answers in the table below.

