## Lab 5

## The Derivative: Definition, Product \& Quotient Rules, and Rates of Change

1. Use the limit definition to calculate $\frac{d y}{d x}$ for the following functions.
(a) $y=4-x^{2}$
(b) $y=\frac{1}{2-x}$
(c) $y=\sqrt{2 x+1}$
2. Each limit represents a derivative $f^{\prime}(a)$. Find $f(x)$ and $a$.
(a) $\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}$
(b) $\lim _{x \rightarrow \pi} \frac{\sin x \cos x}{x-\pi}$
3. Find the points on the graph of $f(x)=x^{3}-3 x^{2}+x+4$ where the tangent line has slope 10 .
4. Determine the points $c$ (if any) such that $f^{\prime}(c)$ does not exist where $f(x)=|x-5|$.
5. Compute the derivative for each of the following functions.
(a) $y=t^{-7.3}$
(b) $y=3 x^{5}-7 x^{2}+4$
(c) $y=\frac{x+1}{x^{2}+1}$
(d) $y=t e^{t-4}$
6. Use the following table of values to calculate the derivative of the given function at $x=2$.

| $x$ | $f(x)$ | $g(x)$ | $f^{\prime}(x)$ | $g^{\prime}(x)$ |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 5 | 4 | -3 | 9 |

(a) $y=3 f(x)-2 g(x)$
(b) $y=f(x) g(x)$
(c) $y=\frac{f(x)}{g(x)}$
7. A stone is shot with a slingshot vertically upward with an initial velocity of $50 \mathrm{~m} / \mathrm{s}$ from an initial height of 10 m .
(a) Find the velocity at $t=2$ and at $t=7$. Explain the change in sign.
(b) What is the stone's maximum height and when does it reach that height?
8. Match the graph of each function in (1) - (4) with the graph of its derivative in (A) - (D). Record your answers in the table below.
(1) $\quad$
(2) $\qquad$
(3) $\qquad$
(4) $\qquad$

(1)




(3)

(C)



