Lab 4

Trigonometric Limits, Limits at Infinity, The Squeeze and Intermediate Value Theorems, and the Precise Definition of Limits

1. Use the Squeeze Theorem to find $\lim _{x \rightarrow 2}\left(x^{2}-4 x+4\right) \sin \left(\frac{x-1}{x-2}\right)$.
2. Evaluate the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\sin (5 x) \sin (2 x)}{\sin (3 x) \sin (4 x)}$
(b) $\lim _{x \rightarrow 0} \frac{\tan (2 x)}{\sin (9 x)}$
(c) $\lim _{t \rightarrow 0} \frac{1-\cos (2 t)}{\sin ^{2}(3 t)}$
(d) $\lim _{t \rightarrow 0} \frac{\cos t-\cos ^{2} t}{t}$
(e) $\lim _{h \rightarrow \frac{\pi}{2}} \frac{1-\cos 3 h}{h}$
(f) $\lim _{x \rightarrow-\infty} \frac{4 x-3}{\sqrt{25 x^{2}+4 x}}$
(g) $\lim _{x \rightarrow \infty}\left(\sqrt{9 x^{3}+x}-x^{3 / 2}\right)$
(h) $\lim _{x \rightarrow \infty}\left(\ln \left(\sqrt{5 x^{2}+2}\right)-\ln (x)\right)$
3. Does the Intermediate Value Theorem apply to the function $f(x)=\frac{1}{x-1}$ on the interval [0, 2]?
4. Show that the following functions have at least one real solution.
(a) $3 x^{3}=1-\sin x$
(b) $\tan x=1-x$
(c) $e^{-x^{2}}=x$
5. Suppose that f is a continuous function on $[1,5]$ and that the only solutions of the equation $f(x)=6$ are $x=1$ and $x=4$. If $f(2)=8$, explain why $f(3)>6$.
6. Use the formal definition of the limit to rigorously prove that $\lim _{x \rightarrow 1}(3 x+2)=5$.
7. Use the formal definition of a limit to show that if $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=K$, then

$$
\lim _{x \rightarrow x}(f(x)+g(x))=L+K .
$$

Hint: You will need to use the Triangle Inequality $|a+b| \leq|a|+|b|$.

