Lab 1
 Preliminaries \& Average Rates of Change

Preliminaries

Determine if each of the following statements are true or false. If false, find a specific counter-example.
(a) $(a+b)^{n}=a^{n}+b^{n}$ for all real numbers a and b and all positive integers $n \geq 2$.
(b) $\frac{1}{a+b}=\frac{1}{a}+\frac{1}{b}$ for all real numbers a and b such that $a, b, a+b \neq 0$.
(c) $\sqrt{a^{2}+b^{2}}=a+b$ for all real numbers a and b.
(d) $\sqrt{a^{2}}=a$ for all real numbers a.
(e) $\frac{a+b}{a}=1+\frac{b}{a}$ for all real numbers such that $a \neq 0$.
(f) $\frac{\sin (a)}{\sin (b)}=\frac{a}{b}$ for all real numbers such that $b \neq k \pi$ where k is an integer.

Rates of Change

For the following exercises, recall the following definition.
Definition: Let $y=f(x)$ be a function defined on the interval $I=[a, b]$. The average rate of change of f on the interval I is the fraction

$$
f_{A R C}[a, b]=\frac{f(b)-f(a)}{b-a}
$$

(1) Consider the function $f(x)=x^{2}$.
(a) Complete the following table for $f_{A R C}[a, b]$.

$[a, b]$	$f_{\text {ARC }}[a, b]$	$[a, b]$	$f_{\text {ARC }}[a, b]$
$[1,2]$		$[0,1]$	
$[1,1.5]$		$[0.5,1]$	
$[1,1.1]$		$[0.9,1]$	
$[1,1.01]$		$[0.99,1]$	
$[1,1.001]$		$[0.999,1]$	

(b) Estimate the instantaneous rate of change of $y=f(x)$ with respect to x at $x=1$.
(c) Estimate the slope of the tangent line to the curve $y=f(x)$ at the point $(1, f(1))=(1,1)$.
(2) Assume that a and h are real numbers and that $h>0$. Show that

$$
f_{A R C}[a, a+h]=\frac{f(a+h)-f(a)}{h} .
$$

(3) Assume that a and h are real numbers and that $h>0$. Verify each statement. In parts (a) - (f), what happens when h is very close to 0 ?
(a) If $f(x)=4$, then

$$
f_{A R C}[a, a+h]=0 .
$$

(b) If $f(x)=x$, then

$$
f_{A R C}[a, a+h]=1
$$

(c) If $f(x)=x^{2}$, then

$$
f_{A R C}[a, a+h]=2 a+h .
$$

(d) If $f(x)=x^{3}$, then

$$
f_{A R C}[a, a+h]=3 a^{2}+3 a h+h^{2} .
$$

(e) If $f(x)=\frac{1}{x}$, then

$$
f_{A R C}[a, a+h]=-\frac{1}{a(a+h)} .
$$

(f) If $f(x)=\sqrt{x}$, then

$$
f_{A R C}[a, a+h]=\frac{1}{\sqrt{a+h}+\sqrt{a}} .
$$

(g) For functions f and g,

$$
(f+g)_{A R C}[a, a+h]=f_{A R C}[a, a+h]+g_{A R C}[a, a+h] .
$$

(h) For functions f and g,

$$
(f \cdot g)_{A R C}[a, a+h]=\left(f(a+h) \cdot g_{A R C}[a, a+h]\right)+\left(g(a) \cdot f_{A R C}[a, a+h]\right)
$$

(4) Suppose that the function f is increasing on $[a, b]$ (so that $u<v$ implies $f(u)<f(v)$ for all u, v in $[a, b])$.
(a) Prove that $f_{A R C}[a, c]>0$ for all c in $(a, b]$.
(b) What can you say if f is decreasing on $[a, b]$?

