Problem Set 5 Due: Wednesday, October 3

Work all of the following problems. A subset of the problems will be graded. Be sure to adhere to the expectations outlined in the General Problem Set Guidelines Sheet.

Unless otherwise stated, all problems can be found in the appropriate Exercises sections of the text (Abstract Algebra by D. Dummit and R. Foote, 3rd Edition).

- Section 8.2 \# 1, 3, 6
- Let R be a P.I.D. and $D=R-\{0\}$. Prove that the field of fractions $D^{-1} R$ is also a P.I.D.
- For the following, let u be a universal side divisor in $\mathbb{Z}[i]$.
(a) Prove that any associate of u is also a universal side divisor in $\mathbb{Z}[i]$.
(b) Prove that there is an associate u^{\prime} of u such that $u^{\prime}=x+i y$ with $x \geq 0$ and $y>0$.
(c) Prove that the complex conjugate \bar{u} of u is also a universal side divisor in $\mathbb{Z}[i]$.
(d) Apply the definition of universal side divisor to $x=1+i$ to deduce that $N(u)=2$ or $N(u)=5$ (where N is the usual field norm defined in Section 7.1). Conclude that u is an associate of either $1+i, 2+i$ or $1+2 i$.
(e) Prove that $1+i$ is a universal side divisor in $\mathbb{Z}[i]$.
(f) The Gaussian integer $2+i$ is a universal side divisor in $\mathbb{Z}[i]$. Use this fact to explain why $1+2 i$ is a universal side divisor in $\mathbb{Z}[i]$. (Hint: Show that $1+2 i$ is an associate of $2-i$.)
(g) List the universal side divisors in $\mathbb{Z}[i]$.
- In $\mathbb{Z}[\sqrt{5}]$, prove that $1+\sqrt{5}$ is irreducible but not prime. Deduce that $\mathbb{Z}[\sqrt{5}]$ is not a unique factorization domain.

