Problem Set 4
 Due: Wednesday, September 26

Work all of the following problems. A subset of the problems will be graded. Be sure to adhere to the expectations outlined in the General Problem Set Guidelines Sheet.

Unless otherwise stated, all problems can be found in the appropriate Exercises sections of the text (Abstract Algebra by D. Dummit and R. Foote, 3rd Edition).

- Section 7.6 \# 3, 5 parts (b) and (c)
- Section 8.1 \# 3, 4
- Find a generator for the ideal $(85,1+13 i)$ in $\mathbb{Z}[i]$.
- Let $F=\mathbb{Q}(\sqrt{-2})$ be the quadratic field with associated quadratic integer ring \mathcal{O} and field norm N as in Section 7.1. Prove that \mathcal{O} is a Euclidean Domain with respect to N. (Hint: Modify the proof for $\mathbb{Z}[i]$.)
- In class we proved that $I=(2,1+\sqrt{-5})$ is not a principal ideal of $\mathbb{Z}[\sqrt{-5}]$. Prove that $J=(3,2-\sqrt{-5})$ is also not principal yet $I J$ is a principal ideal in $\mathbb{Z}[\sqrt{-5}]$. You may assume the results of Section $7.4 \# 12$.

