Problem Set 10
 Due: Wednesday, November 7

Work all of the following problems. A subset of the problems will be graded. Be sure to adhere to the expectations outlined in the General Problem Set Guidelines Sheet.

Unless otherwise stated, all problems can be found in the appropriate Exercises sections of the text (Abstract Algebra by D. Dummit and R. Foote, 3rd Edition).

- Section 13.4 \# 2, 3, 4, 5
- Using the following steps, determine the degree of $\beta:=1+\sqrt[3]{2}+\sqrt[3]{4}$ over \mathbb{Q}.
(a) Let $\alpha=\sqrt[3]{2}$. Show that $\beta \in \mathbb{Q}(\alpha)$.
(b) Find $[\mathbb{Q}(\alpha): \mathbb{Q}]$.
(c) Explain why $[\mathbb{Q}(\beta)$: $\mathbb{Q}]$ divides $[\mathbb{Q}(\alpha): \mathbb{Q}]$.
(d) Show that $[\mathbb{Q}(\beta): \mathbb{Q}] \neq 1$.
(e) What is the degree of β over \mathbb{Q} ?
- Let $\zeta \neq 1$ be any nontrivial ninth root of unity such that $\omega=\zeta+\zeta^{-1} \neq-1$.
(a) Using a cyclotomic polynomial, show that $\zeta^{8}+\zeta^{7}+\cdots+\zeta+1=0$.
(b) Show that $0=\zeta^{8}+\zeta^{7}+\cdots+\zeta+1=\omega^{4}+\omega^{3}-3 \omega^{2}-2 \omega+1$.
(c) Observe that $\omega^{4}+\omega^{3}-3 \omega^{2}-2 \omega+1=(\omega+1)\left(\omega^{3}-3 \omega+1\right)$. Why is ω a root of the polynomial $x^{3}-3 x+1$?
(d) Find three distinct roots of $x^{3}-3 x+1$.
(e) Prove that the splitting field of $x^{3}-3 x+1$ over \mathbb{Q} is $\mathbb{Q}\left(\zeta_{9}+\zeta_{9}^{-1}\right)$ where $\zeta_{9}=e^{\frac{2 \pi i}{9}}$.

