Quiz Set 1 For Quiz on Thursday, January 30

Work all of the following problems. A subset of the problems and definitions from Chapter 2 will be on Quiz 1 to be given January 30. Quizzes will be graded for correctness and clarity.

- (1) (Gallian, Chapter 2 Exercises, #14) For group elements a, b, and c, express $(ab)^3$ and $(ab^{-2}c)^{-2}$ without parentheses.
- (2) (Gallian, Chapter 2 Exercises, #16) Show that the set $G = \{5, 15, 25, 35\}$ is a group under multiplication modulo 40.
- (3) (Gallian, Chapter 2 Exercises, #26) Prove that in a group, $(a^{-1})^{-1} = a$ for all a.
- (4) (Gallian, Chapter 2 Exercises, #27) For any elements a and b from a group and any integer n, prove that $(a^{-1}ba)^n = a^{-1}b^n a$. Note: You need to consider three cases: n < 0, n = 0 and n > 0.
- (5) (Gallian, Chapter 2 Exercises, #33) Suppose the table below is a group (i.e., Cayley) table. Fill in the blank entries.

		b	c	d
e				
	b			e
	c	d	e	
	d		a	b
	e	$b \\ c$	$egin{array}{c c} b \\ c & d \end{array}$	$egin{array}{c c} b & & \\ c & d & e \end{array}$

- (6) (Gallian, Chapter 2 Exercises, #34) Prove that in a group, $(ab)^2 = a^2b^2$ if and only if ab = ba.
- (7) (Gallian, Chapter 2 Exercises, #38) Give an example of a group with elements a, b, c, d, and x such that axb = cxd but $ab \neq cd$. (Hence, "middle cancellation" is not valid in groups.)
- (8) (Gallian, Chapter 3 Exercises, #6) In the group \mathbb{Z}_{12} , find |a|, |b| and |a+b| for each case.
 - (a) a = 6, b = 2
 - (b) a = 3, b = 8
 - (c) a = 5, b = 4

Do you see any relationship between |a|, |b| and |a + b|?

- (9) (Gallian, Chapter 3 Exercises, #49) Suppose a group contains elements a and b such that |a| = 4, |b| = 2 and $a^{3}b = ba$. Find |ab|.
- (10) Let G be a group and let $g \in G$. Define a function $\phi_g : G \to G$ by $\phi_g(x) = gxg^{-1}$, where g^{-1} is the inverse of g, for all $x \in G$. Show that ϕ_g is one-to-one and onto. (Recall that a function f is one-to-one if whenever f(a) = f(b) we must have a = b. Recall that a function $f : S \to T$ is onto if for each $t \in T$ there is an element $s \in S$ such that f(s) = t.)
- (11) Let G be a group. For elements $a, b \in G$, define $a \sim b$ if there is some $x \in G$ with $a = xbx^{-1}$. Prove that \sim is an equivalence relation on G.