Quiz Set 1
 For Quiz on Thursday, January 30

Work all of the following problems. A subset of the problems and definitions from Chapter 2 will be on Quiz 1 to be given January 30. Quizzes will be graded for correctness and clarity.
(1) (Gallian, Chapter 2 Exercises, \#14) For group elements a, b, and c, express $(a b)^{3}$ and $\left(a b^{-2} c\right)^{-2}$ without parentheses.
(2) (Gallian, Chapter 2 Exercises, \#16) Show that the set $G=\{5,15,25,35\}$ is a group under multiplication modulo 40.
(3) (Gallian, Chapter 2 Exercises, \#26) Prove that in a group, $\left(a^{-1}\right)^{-1}=a$ for all a.
(4) (Gallian, Chapter 2 Exercises, \#27) For any elements a and b from a group and any integer n, prove that $\left(a^{-1} b a\right)^{n}=a^{-1} b^{n} a$. Note: You need to consider three cases: $n<0, n=0$ and $n>0$.
(5) (Gallian, Chapter 2 Exercises, \#33) Suppose the table below is a group (i.e., Cayley) table. Fill in the blank entries.

	e	a	b	c	d
e	e				
a		b			e
b		c	d	e	
c		d		a	b
d					

(6) (Gallian, Chapter 2 Exercises, \#34) Prove that in a group, $(a b)^{2}=a^{2} b^{2}$ if and only if $a b=b a$.
(7) (Gallian, Chapter 2 Exercises, \#38) Give an example of a group with elements a, b, c, d, and x such that $a x b=c x d$ but $a b \neq c d$. (Hence, "middle cancellation" is not valid in groups.)
(8) (Gallian, Chapter 3 Exercises, \#6) In the group \mathbb{Z}_{12}, find $|a|,|b|$ and $|a+b|$ for each case.
(a) $a=6, b=2$
(b) $a=3, b=8$
(c) $a=5, b=4$

Do you see any relationship between $|a|,|b|$ and $|a+b|$?
(9) (Gallian, Chapter 3 Exercises, \#49) Suppose a group contains elements a and b such that $|a|=4,|b|=2$ and $a^{3} b=b a$. Find $|a b|$.
(10) Let G be a group and let $g \in G$. Define a function $\phi_{g}: G \rightarrow G$ by $\phi_{g}(x)=g x g^{-1}$, where g^{-1} is the inverse of g, for all $x \in G$. Show that ϕ_{g} is one-to-one and onto. (Recall that a function f is one-to-one if whenever $f(a)=f(b)$ we must have $a=b$. Recall that a function $f: S \rightarrow T$ is onto if for each $t \in T$ there is an element $s \in S$ such that $f(s)=t$.)
(11) Let G be a group. For elements $a, b \in G$, define $a \sim b$ if there is some $x \in G$ with $a=x b x^{-1}$. Prove that \sim is an equivalence relation on G.

