## Problem Set 4 Due: Thursday, October 24

Work the following problems. A subset of the problems will be graded. Be sure to adhere to the expectations outlined in the Problem Set Guidelines Sheet.

- Verify that $17296=2^{4} \cdot 23 \cdot 47$ and $18416=2^{4} \cdot 1151$ is an amicable pair.
- Section 8 \# 5, 8, 12, 13
- Let $a$ and $m$ be positive integers such that $(a, m) \neq 1$.
(a) Show that $a^{\phi(m)} \not \equiv 1(\bmod m)$ with a specific example.
(b) Prove that there is no positive integer $k$ such that $a^{k} \equiv 1(\bmod m)$.
- Graduate Students: Section 8 \# 14

Hint for Section $8 \not \# 13$ : Write the even perfect number as $2^{k-1}\left(2^{k}-1\right)$. Consider the case $k=2$ separately. For $k>2$, separate the argument into cases that arise from dividing $k$ by 4 . You may assume (without proof) the fact that $16^{t} \equiv 6(\bmod 10)$ for any positive integer $t$.

