Math 206-01: Linear Algebra I

Differential Equations Homework

As in class, we let \mathbb{D}^2 denote the pairs of all differentiable, real-valued functions and $\delta: \mathbb{D}^2 \to \mathbb{D}^2$ be the linear mapping defined by differentiation.

(1) Let V be the subset of all $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$ in \mathbb{D}^2 for which: $x'_1(t) = -x_2(t), \quad x'_2(t) = -x_1(t).$

Given the initial conditions

$$\mathbf{x}(0) = \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix},$$

find the solutions $\mathbf{x}(t)$ to this differential equation.

(2) Let V be the subset of all
$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$
 in \mathbb{D}^2 for which:
 $x'_1(t) = -x_1(t) + x_2(t), \quad x'_2(t) = x_1(t) - x_2(t).$

Find the solutions $\mathbf{x}(t)$ to this differential equation.

(3) Let V be the subset of all
$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$
 in \mathbb{D}^2 for which:
 $x'_1(t) = 2x_1(t) + x_2(t), \quad x'_2(t) = x_1(t) + 2x_2(t).$

Find the solutions $\mathbf{x}(t)$ to this differential equation.

Answers:

(1)
$$\mathbf{x}(t) = -e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix} + e^{-t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

(2) $\mathbf{x}(t) = C_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{-2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ for some constants C_1, C_2 in \mathbb{R}
(3) $\mathbf{x}(t) = C_1 e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix} + C_2 e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ for some constants C_1, C_2 in \mathbb{R}