Math 206-01: Linear Algebra I

Dr. S. Cooper, Spring 2007

Differential Equations Homework

As in class, we let \mathbb{D}^{2} denote the pairs of all differentiable, real-valued functions and $\delta: \mathbb{D}^{2} \rightarrow \mathbb{D}^{2}$ be the linear mapping defined by differentiation.
(1) Let V be the subset of all $\mathbf{x}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$ in \mathbb{D}^{2} for which:

$$
x_{1}^{\prime}(t)=-x_{2}(t), \quad x_{2}^{\prime}(t)=-x_{1}(t)
$$

Given the initial conditions

$$
\mathbf{x}(0)=\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
2
\end{array}\right],
$$

find the solutions $\mathbf{x}(t)$ to this differential equation.
(2) Let V be the subset of all $\mathbf{x}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$ in \mathbb{D}^{2} for which:

$$
x_{1}^{\prime}(t)=-x_{1}(t)+x_{2}(t), \quad x_{2}^{\prime}(t)=x_{1}(t)-x_{2}(t) .
$$

Find the solutions $\mathbf{x}(t)$ to this differential equation.
(3) Let V be the subset of all $\mathbf{x}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$ in \mathbb{D}^{2} for which:

$$
x_{1}^{\prime}(t)=2 x_{1}(t)+x_{2}(t), \quad x_{2}^{\prime}(t)=x_{1}(t)+2 x_{2}(t) .
$$

Find the solutions $\mathbf{x}(t)$ to this differential equation.

Answers:
(1) $\mathbf{x}(t)=-e^{t}\left[\begin{array}{r}1 \\ -1\end{array}\right]+e^{-t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(2) $\mathbf{x}(t)=C_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right]+C_{2} e^{-2 t}\left[\begin{array}{r}1 \\ -1\end{array}\right]$ for some constants C_{1}, C_{2} in \mathbb{R}
(3) $\mathbf{x}(t)=C_{1} e^{t}\left[\begin{array}{r}1 \\ -1\end{array}\right]+C_{2} e^{3 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ for some constants C_{1}, C_{2} in \mathbb{R}

