Tutorial Worksheet #8 Friday, March 13

Instructions: Work through the following exercises. *Fully show and explain all of your work*. Remember to use good notation and full sentences.

Exercises: From the textbook *Linear Algebra And Its Applications*, fifth edition, by David C. Lay, Steven R. Lay, Judi J. McDonald.

1. (§3.1 #3) Using a cofactor expansion across the first row, compute the determinant of the matrix

$\begin{bmatrix} 2 \end{bmatrix}$	-2	3	
3	1	2	
1	3	-1	

2. $(\S3.1 \# 9)$ Compute the following determinant by cofactor expansion. At each step, choose a row or column that involves the least amount of computation:

0	0	5	
7	2	-5	
0	0	0	·
3	1	7	
	$0 \\ 7 \\ 0 \\ 3$	$\begin{array}{ccc} 0 & 0 \\ 7 & 2 \\ 0 & 0 \\ 3 & 1 \end{array}$	$\begin{array}{cccc} 0 & 0 & 5 \\ 7 & 2 & -5 \\ 0 & 0 & 0 \\ 3 & 1 & 7 \end{array}$

3. $(\S3.1 \ \#10)$ Compute the following determinant by cofactor expansion. At each step, choose a row or column that involves the least amount of computation:

1	-2	5		
0	0	$3 \\ -3$	0	
2	-4	-3	5	•
2	0	3	5	

- 4. (§3.1 #33) Verify that det $EA = (\det E)(\det A)$, where E is the elementary matrix $E = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
- 5. (§3.1 #35) Verify that det $EA = (\det E)(\det A)$, where E is the elementary matrix $E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
- 6. $(\S{3.1 \# 38})$ Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and let k be a scalar. Find a formula that relates det(kA) to k and det(A).
- 7. (§3.2 #5) Find the determinant

$$\begin{vmatrix} 1 & 5 & -4 \\ -1 & -4 & 5 \\ -2 & -8 & 7 \end{vmatrix}$$

by row reduction to echelon form.

8. (§3.2 #15) Suppose
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 7$$
. Find
 $\begin{vmatrix} a & b & c \\ d & e & f \\ 3g & 3h & 3i \end{vmatrix}$

9. (§3.2 #21) Use the determinant to determine if the matrix

$\begin{bmatrix} 2 \end{bmatrix}$	6	0]
1	3	2
3	9	2

is invertible.

10. (§3.2 #23) Use the determinant to determine if the matrix

is invertible.

11. ($\S3.2 \# 25$) Use the determinant to determine if the set of vectors

[7]		-8		[7]
-4	,	$\begin{bmatrix} -8\\5 \end{bmatrix}$,	0
$\begin{bmatrix} -6 \end{bmatrix}$		7		$\begin{bmatrix} -5 \end{bmatrix}$

is linearly independent.

- 12. (§3.2 #32) Suppose that A is a square matrix such that det $A^3 = 0$. Explain why A cannot be invertible.
- 13. (§3.2 #34) Let A and P be square matrices, with P invertible. Show that

$$\det(PAP^{-1}) = \det A.$$

14. (§3.3 #5) Use Cramer's Rule to compute the solution of the system

$$x_1 + x_2 = 3$$

 $-3x_1 + 2x_3 = 0$
 $x_2 - 2x_3 = 2.$

15. $(\S3.3 \# 11)$ Compute the adjugate (classical adjoint) of the matrix

$$\begin{bmatrix} 0 & -2 & -1 \\ 5 & 0 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$

and then use this to give the inverse of the matrix.

16. $(\S3.3 \# 21)$ Find the area of the parallelogram whose vertices are (-2, 0), (0, 3), (1, 3), (-1, 0).