Tutorial Worksheet \#8

Friday, March 13

Instructions: Work through the following exercises. Fully show and explain all of your work. Remember to use good notation and full sentences.

Exercises: From the textbook Linear Algebra And Its Applications, fifth edition, by David C. Lay, Steven R. Lay, Judi J. McDonald.

1. (§3.1 \#3) Using a cofactor expansion across the first row, compute the determinant of the matrix

$$
\left[\begin{array}{rrr}
2 & -2 & 3 \\
3 & 1 & 2 \\
1 & 3 & -1
\end{array}\right] .
$$

2. ($\S 3.1 \# 9)$ Compute the following determinant by cofactor expansion. At each step, choose a row or column that involves the least amount of computation:

$$
\left|\begin{array}{rrrr}
4 & 0 & 0 & 5 \\
1 & 7 & 2 & -5 \\
3 & 0 & 0 & 0 \\
8 & 3 & 1 & 7
\end{array}\right| .
$$

3. (§3.1 \#10) Compute the following determinant by cofactor expansion. At each step, choose a row or column that involves the least amount of computation:

$$
\left|\begin{array}{rrrr}
1 & -2 & 5 & 2 \\
0 & 0 & 3 & 0 \\
2 & -4 & -3 & 5 \\
2 & 0 & 3 & 5
\end{array}\right| .
$$

4. $(\S 3.1 \# 33)$ Verify that $\operatorname{det} E A=(\operatorname{det} E)(\operatorname{det} A)$, where E is the elementary matrix $E=\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
5. ($\S 3.1 \# 35)$ Verify that $\operatorname{det} E A=(\operatorname{det} E)(\operatorname{det} A)$, where E is the elementary matrix $E=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $A=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]$.
6. ($\S 3.1 \# 38)$ Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and let k be a scalar. Find a formula that relates $\operatorname{det}(k A)$ to k and $\operatorname{det}(A)$.
7. (§3.2 \#5) Find the determinant

$$
\left|\begin{array}{rrr}
1 & 5 & -4 \\
-1 & -4 & 5 \\
-2 & -8 & 7
\end{array}\right|
$$

by row reduction to echelon form.
8. (§3.2 \#15) Suppose $\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=7$. Find
$\left|\begin{array}{ccc}a & b & c \\ d & e & f \\ 3 g & 3 h & 3 i\end{array}\right|$.
9. (§3.2 \#21) Use the determinant to determine if the matrix

$$
\left[\begin{array}{lll}
2 & 6 & 0 \\
1 & 3 & 2 \\
3 & 9 & 2
\end{array}\right]
$$

is invertible.
10. (§3.2 \#23) Use the determinant to determine if the matrix

$$
\left[\begin{array}{rrrr}
2 & 0 & 0 & 6 \\
1 & -7 & -5 & 0 \\
3 & 8 & 6 & 0 \\
0 & 7 & 5 & 4
\end{array}\right]
$$

is invertible.
11. ($\S 3.2 \# 25)$ Use the determinant to determine if the set of vectors

$$
\left[\begin{array}{r}
7 \\
-4 \\
-6
\end{array}\right],\left[\begin{array}{r}
-8 \\
5 \\
7
\end{array}\right],\left[\begin{array}{r}
7 \\
0 \\
-5
\end{array}\right]
$$

is linearly independent.
12. ($£ 3.2 \# 32$) Suppose that A is a square matrix such that $\operatorname{det} A^{3}=0$. Explain why A cannot be invertible.
13. ($(3.2 \# 34)$ Let A and P be square matrices, with P invertible. Show that

$$
\operatorname{det}\left(P A P^{-1}\right)=\operatorname{det} A .
$$

14. ($\S 3.3 \# 5)$ Use Cramer's Rule to compute the solution of the system

$$
\begin{array}{r}
x_{1}+x_{2}=3 \\
-3 x_{1}+2 x_{3}=0 \\
x_{2}-2 x_{3}=2 .
\end{array}
$$

15. (§3.3 \#11) Compute the adjugate (classical adjoint) of the matrix

$$
\left[\begin{array}{rrr}
0 & -2 & -1 \\
5 & 0 & 0 \\
-1 & 1 & 1
\end{array}\right],
$$

and then use this to give the inverse of the matrix.
16. (§3.3 \#21) Find the area of the parallelogram whose vertices are $(-2,0),(0,3),(1,3),(-1,0)$.

