Tutorial Worksheet #6 Friday, February 28

Instructions: Work through the following exercises. *Fully show and explain all of your work.* Remember to use good notation and full sentences.

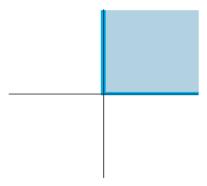
Exercises: From the textbook *Linear Algebra And Its Applications*, fifth edition, by David C. Lay, Steven R. Lay, Judi J. McDonald. Denote the identity matrix by I. Also, for exercises from Section 2.3, assume all matrices are $n \times n$ unless otherwise specified.

- 1. $(\S2.3 \ \#1)$ Determine if $\begin{bmatrix} 5 & 7 \\ -3 & -6 \end{bmatrix}$ is invertible. Use as few calculations as possible. Justify your answer.
- 2. $(\S2.3 \#5)$ Determine if $\begin{bmatrix} 0 & 3 & -5 \\ 1 & 0 & 2 \\ -4 & -9 & 7 \end{bmatrix}$ is invertible. Use as few calculations as possible.

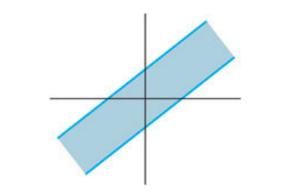
Justify your answer.

- 3. (§2.3 #17) If A is invertible, then the columns of A^{-1} are linearly independent. Explain why.
- 4. (§2.3 #19) If the columns of a 7×7 matrix D are linearly independent, what can you say about solutions of $D\mathbf{x} = \mathbf{b}$? Why?
- 5. (§2.3 #21) If the equation $G\mathbf{x} = \mathbf{y}$ has more than one solution for some \mathbf{y} in \mathbb{R}^n , can the columns of G span \mathbb{R}^n ? Why or why not?
- 6. (§2.3 #26) Explain why the columns of A^2 span \mathbb{R}^n whenever the columns of A are linearly independent.
- 7. (§2.3 #28) Show that if AB is invertible, so is B.
- 8. (§2.3 #29) If A is an $n \times n$ matrix and the equation $A\mathbf{x} = \mathbf{b}$ has more than one solution for some **b** in \mathbb{R}^n , then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is not one-to-one. What else can you say about this transformation? Justify your answer.
- 9. (§2.3 #33) The transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (-5x_1 + 9x_2, 4x_1 7x_2)$ is linear. Show that T is invertible and find a formula for T^{-1} .
- 10. (§2.3 #37) Suppose T and U are linear transformations from \mathbb{R}^n to \mathbb{R}^n such that $T(U\mathbf{x}) = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n . Is it true that $U(T\mathbf{x}) = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n . Why or why not?

11. (§2.8 #1) The figure below displays a set H in \mathbb{R}^2 . Assume the set includes the bounding lines. Give a specific reason why the set H is *not* a subspace of \mathbb{R}^2 .



12. (§2.8 #3) The figure below displays a set H in \mathbb{R}^2 . Assume the set includes the bounding lines. Give a specific reason why the set H is *not* a subspace of \mathbb{R}^2 .



13. (§2.8 #5) Let $\mathbf{v_1} = \begin{bmatrix} 2\\ 3\\ -5 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} -4\\ -5\\ 8 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 8\\ 2\\ -9 \end{bmatrix}$. Determine if \mathbf{w} is in the subspace of \mathbb{R}^3 generated by $\mathbf{v_1}$ and $\mathbf{v_2}$.

14.
$$(\S2.8 \ \#7)$$
 Let $\mathbf{v_1} = \begin{bmatrix} 2\\ -8\\ 6 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} -3\\ 8\\ -7 \end{bmatrix}$, $\mathbf{v_3} = \begin{bmatrix} -4\\ 6\\ -7 \end{bmatrix}$, $\mathbf{p} = \begin{bmatrix} 6\\ -10\\ 11 \end{bmatrix}$, and $A = \begin{bmatrix} \mathbf{v_1} & \mathbf{v_2} & \mathbf{v_3} \end{bmatrix}$.

- (a) How many vectors are in $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$?
- (b) How many vectors are in Col A?
- (c) Is \mathbf{p} in Col A? Why or why not?

