

Appendix B: Complex Numbers

Question: What are the real solutions to $x^2 - 1$?

Question: What are the solutions to $x^2 + 1 = 0$?

Note: To handle $\sqrt{-1}$, we

Definition: A **complex number** is a number of the form

$$z = a + bi$$

where a and b are real numbers. We denote the set of all complex numbers by \mathbb{C} . Also,

Notes:

1. A real number is a complex number:
2. $\mathbb{C} \longleftrightarrow \mathbb{R}^2$

Operations: Let $z = a + bi$ and $w = c + di$ be complex numbers. Then

1. $z + w =$

2. $zw =$

3. The **conjugate** of z is

4. The **absolute value** (or **modulus**) of z is

5. If $z \neq 0$ (i.e., $z \neq 0 + 0i$), then the **multiplicative inverse** of z is

Examples: Let $z = 1 + 3i$ and $w = 4 - 2i$.

1. $z + w$

2. zw

3. \bar{z}

4. $z\bar{z}$

5. $|z|$

6. $\frac{w}{z}$

Useful Properties: Let z and w be complex numbers.

1. $\bar{z} = z$

2. $\overline{z+w} =$

3. $\overline{zw} =$

4. $z\bar{z} =$

5. $|zw| =$

6. $|z+w|$

7. $z = a + bi \implies$

Polar Coordinates: Given the complex number $z = a + bi$, let φ be the angle between the positive real axis and (a, b) , where $-\pi < \varphi \leq \pi$.

De Moivre's Theorem: Let $z = a + bi = r(\cos \varphi + i \sin \varphi)$ where $r = |z|$. Then

Example: Find z^7 where $z = \sqrt{3} + i$.