Chapter 6: Orthogonality and Least Squares

§6.1 – Inner Product, Length, and Orthogonality (Continued)

Recall: If \mathbf{u}, \mathbf{v} are non-zero vectors in \mathbb{R}^2 or \mathbb{R}^3 , then

Definition: Two vectors \mathbf{u} and \mathbf{v} are in \mathbb{R}^n are said to be **orthogonal** if $\mathbf{u} \cdot \mathbf{v} = 0$.

Examples:

1.

2. Let
$$\mathbf{u} = \begin{bmatrix} -2\\ 3\\ 1\\ 4 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1\\ 2\\ 0\\ -1 \end{bmatrix}$

Point-Normal Equations of Lines and Planes:

Example: y = -6x + 11 is an equation of a line in \mathbb{R}^2 . By re-arranging, we have

$$6(x-3) + (y+7) = 0.$$

Similarly, 4(x-3) + 2y - 5(z-7) = 0 represents a plane in \mathbb{R}^3 through

Theorem:

1. If a, b are constants not both 0, then an equation

$$ax + by + c = 0$$

represents a line in \mathbb{R}^2 with normal $\mathbf{n} = (a, b)$.

2. If a, b, c are constants not both 0, then an equation

$$ax + by + cz + d = 0$$

represents a plane in \mathbb{R}^3 with normal $\mathbf{n} = (a, b, c)$.

Special Cases of the Theorem:

Orthogonal Projections:

Goal: To decompose a vector **u** into $\mathbf{u} = \mathbf{w_1} + \mathbf{w_2}$ where (i) $\mathbf{w_1} = c\mathbf{a}$ for a given vector **a**, and (ii) $\mathbf{w_1}$ and $\mathbf{w_2}$ are orthogonal.

Projection Theorem: Let **u** and **a** be vectors in \mathbb{R}^n with $\mathbf{a} \neq \mathbf{0}$. Then we can uniquely express

 $\mathbf{u}=\mathbf{w_1}+\mathbf{w_2}$

where $\mathbf{w_1} = k\mathbf{a}$ and $\mathbf{w_2} \cdot \mathbf{a} = 0$.

Definition: Let \mathbf{u}, \mathbf{a} be in \mathbb{R}^n with $\mathbf{a} \neq \mathbf{0}$.

1. The vector component of u along a (or orthogonal projection of u on a) is

2. The vector component of u orthogonal to a is