Chapter 6: Orthogonality and Least Squares

$\S 6.1$ - Inner Product, Length, and Orthogonality (Continued)

Recall: If \mathbf{u}, \mathbf{v} are non-zero vectors in \mathbb{R}^{2} or \mathbb{R}^{3}, then

Definition: Two vectors \mathbf{u} and \mathbf{v} are in \mathbb{R}^{n} are said to be orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.

Examples:

1.
2. Let $\mathbf{u}=\left[\begin{array}{r}-2 \\ 3 \\ 1 \\ 4\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{r}1 \\ 2 \\ 0 \\ -1\end{array}\right]$

Point-Normal Equations of Lines and Planes:

Example: $y=-6 x+11$ is an equation of a line in \mathbb{R}^{2}. By re-arranging, we have

$$
6(x-3)+(y+7)=0 .
$$

Similarly, $4(x-3)+2 y-5(z-7)=0$ represents a plane in \mathbb{R}^{3} through

Theorem:

1. If a, b are constants not both 0 , then an equation

$$
a x+b y+c=0
$$

represents a line in \mathbb{R}^{2} with normal $\mathbf{n}=(a, b)$.
2. If a, b, c are constants not both 0 , then an equation

$$
a x+b y+c z+d=0
$$

represents a plane in \mathbb{R}^{3} with normal $\mathbf{n}=(a, b, c)$.

Special Cases of the Theorem:

Orthogonal Projections:

Goal: To decompose a vector \mathbf{u} into $\mathbf{u}=\mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}$ where (i) $\mathbf{w}_{\mathbf{1}}=c \mathbf{a}$ for a given vector \mathbf{a}, and (ii) $\mathbf{w}_{\mathbf{1}}$ and $\mathbf{w}_{\mathbf{2}}$ are orthogonal.

Projection Theorem: Let \mathbf{u} and \mathbf{a} be vectors in \mathbb{R}^{n} with $\mathbf{a} \neq \mathbf{0}$. Then we can uniquely express

$$
\mathbf{u}=\mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}
$$

where $\mathbf{w}_{\mathbf{1}}=k \mathbf{a}$ and $\mathbf{w}_{\mathbf{2}} \cdot \mathbf{a}=0$.

Definition: Let \mathbf{u}, \mathbf{a} be in \mathbb{R}^{n} with $\mathbf{a} \neq \mathbf{0}$.

1. The vector component of \mathbf{u} along a (or orthogonal projection of \mathbf{u} on \mathbf{a}) is
2. The vector component of \mathbf{u} orthogonal to \mathbf{a} is
