Chapter 6: Orthogonality and Least Squares

§6.1 - Inner Product, Length, and Orthogonality

Goal: To study the Euclidean Vector Spaces \mathbb{R}^{2} and \mathbb{R}^{3} more deeply.

Basic Terminology:
Definitions: Let $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ be in \mathbb{R}^{n}.

1. The inner product (or dot product) of \mathbf{u} and \mathbf{v} is
2. The length (or norm) of \mathbf{u} is
3. The distance between \mathbf{u} and \mathbf{v} is

Examples: Let $\mathbf{u}=\left[\begin{array}{r}-3 \\ 2 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{r}7 \\ 0 \\ -1\end{array}\right]$.

Theorem: Let \mathbf{u}, \mathbf{v} and \mathbf{w} be in \mathbb{R}^{n} and c be a scalar. Then

1. $\mathbf{u} \cdot \mathbf{v}$
2. $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}$
3. $(c \mathbf{u}) \cdot \mathbf{v}$
4. $\mathbf{u} \cdot \mathbf{u}$
5. ||u||
6. $\|\mathbf{u}\|=0$
7. \|cu \|

Example: Let \mathbf{u}, \mathbf{v} be in \mathbb{R}^{n}. Then

$$
(\mathbf{u}-2 \mathbf{v}) \cdot(3 \mathbf{u}+4 \mathbf{v})
$$

Note: If \mathbf{u} is in \mathbb{R}^{2}, then

Observe: We can normalize a vector so it has length one. The resulting vector is a called a unit vector.

Example: Let $\mathbf{u}=\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right]$.

Remark: If \mathbf{u} and \mathbf{v} are both non-zero vectors in \mathbb{R}^{2} or \mathbb{R}^{3}, then

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

Cauchy-Schwarz and Triangle Inequalities: If \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^{n}, then

Other Useful Properties: Let \mathbf{u} and \mathbf{v} be in \mathbb{R}^{n}. Then

1. $\|\mathbf{u}+\mathbf{v}\|^{2}+\|\mathbf{u}-\mathbf{v}\|^{2}=2\left(\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}\right)$
2. $\mathbf{u} \cdot \mathbf{v}=\frac{1}{4}\|\mathbf{u}+\mathbf{v}\|^{2}-\frac{1}{4}\|\mathbf{u}-\mathbf{v}\|^{2}$
