Chapter 5: Eigenvalues and Eigenvectors

$\S 5.4$ - Eigenvectors and Linear Transformations

Goal: To understand what diagonalization means for linear transformations.

Recall: An $n \times n$ matrix A is diagonalizable if and only if A is similar to a diagonal matrix. That is, A is diagonlizable if and only if $A=P D P^{-1}$ for some invertible matrix P and diagonal matrix D.

Examples:

1. Let $A=\left[\begin{array}{rrr}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$. Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$.

Notes:
(a) The standard matrix of T is A. Thus, if

$$
\mathcal{E}=\left\{\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \mathbf{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

is the standard basis for \mathbb{R}^{3}, we have
(b)

Now $\operatorname{det}(A-\lambda I)=-(\lambda-2)^{2}(\lambda-1)$ (worked out in a past class!). Hence,

- A has eigenvalues
- The eigenspace for $\lambda_{2}=2$ has basis
- The eigenspace for $\lambda_{1}=1$ has basis
- We have 3 linearly independent eigenvectors and so A is

Observe: $\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is an eigenvector basis for \mathbb{R}^{3}.

We have:
2. Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=A \mathbf{x}$ where $A=\left[\begin{array}{rr}5 & -3 \\ -7 & 1\end{array}\right]$. Find a basis \mathcal{B} for \mathbb{R}^{2} such that $[T]_{\mathcal{B}}$ is diagonal.

