Chapter 5: Eigenvalues and Eigenvectors

§5.4 – Eigenvectors and Linear Transformations

Goal: To understand what diagonalization means for linear transformations.

Recall: An $n \times n$ matrix A is diagonalizable if and only if A is similar to a diagonal matrix. That is, A is diagonlizable if and only if $A = PDP^{-1}$ for some invertible matrix P and diagonal matrix D.

Examples:

1. Let
$$A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$$
. Define $T : \mathbb{R}^3 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$.

Notes:

(a) The standard matrix of T is A. Thus, if

$$\mathcal{E} = \left\{ \mathbf{e_1} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \mathbf{e_2} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \mathbf{e_3} = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

is the standard basis for \mathbb{R}^3 , we have

(b)

Now $det(A - \lambda I) = -(\lambda - 2)^2(\lambda - 1)$ (worked out in a past class!). Hence,

- A has eigenvalues
- The eigenspace for $\lambda_2 = 2$ has basis
- The eigenspace for $\lambda_1 = 1$ has basis
- We have 3 linearly independent eigenvectors and so A is

Observe: $\mathcal{B} = \{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ is an eigenvector basis for \mathbb{R}^3 .

2. Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$ where $A = \begin{bmatrix} 5 & -3 \\ -7 & 1 \end{bmatrix}$. Find a basis \mathcal{B} for \mathbb{R}^2 such that $[T]_{\mathcal{B}}$ is diagonal.