

## Chapter 5: Eigenvalues and Eigenvectors

### §5.3 – Diagonalization (Continued)

**Recall:** An  $n \times n$  matrix  $A$  is diagonalizable if and only if  $A$  has  $n$  linearly independent eigenvectors.

**Theorem:** An  $n \times n$  matrix with  $n$  distinct eigenvalues is diagonalizable.

**Proof:**

**Example:** From last class, the matrix  $A = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$  has 3 distinct eigenvalues  $\lambda_1 = 3, \lambda_2 = 2, \lambda_3 = 1$ . Thus,  $A$  is diagonalizable.

**Examples:** Diagonalize the following matrices, if possible.

$$1. A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$2. \ A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$



**Theorem:** Let  $A$  be an  $n \times n$  matrix with distinct eigenvalues  $\lambda_1, \dots, \lambda_p$ .

- (a) For  $1 \leq k \leq p$ , the dimension of the eigenspace for  $\lambda_k$  is less than or equal to the algebraic multiplicity of  $\lambda_k$ .
- (b)  $A$  is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals  $n$ .

(c) If  $A$  is diagonalizable and  $\mathcal{B}_k$  is a basis for the eigenspace corresponding to  $\lambda_k$ , then the vectors in  $\mathcal{B}_1, \dots, \mathcal{B}_p$  is an eigenvector basis for  $\mathbb{R}^n$ .

**Example:** Let  $A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{bmatrix}$ .