

Chapter 3: Determinants

§3.3 – Cramer’s Rule, Volume & Linear Transformations (Cont.)

Part I - Cramer’s Rule (continued):

The Classical Adjoint and Inverses:

Let A be an $n \times n$ invertible matrix.

Goal: Find a formula for A^{-1} .

We know: The j th column of A^{-1} is the solution to

$$A\mathbf{x} = \mathbf{e}_j$$

Cramer’s Rule:

Theorem: Let A be an $n \times n$ invertible matrix. We have

Example: Let $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 3 & 2 \\ 5 & 0 & 2 \end{bmatrix}$. Last week we found $\det(A) = 30 \neq 0$ and so A^{-1} exists. We also found:

Part II - Determinants and Geometry:

Example: Consider a parallelogram in \mathbb{R}^2 :

The area depends on the base and height. What if we had:

Fact: Let \mathbf{a}_1 and \mathbf{a}_2 be non-zero vectors in \mathbb{R}^2 . Then for any scalar c , the area of the parallelogram determined by \mathbf{a}_1 and \mathbf{a}_2 equals the area of the parallelogram determined by

Theorem: If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\det A|$. If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $|\det A|$.

Example: Find the area of the parallelogram determined by the points $(-2, -2), (0, 3), (4, -1), (6, 4)$.

Theorem:

1. Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be a linear transformation with standard matrix A . Let S be a parallelogram in \mathbb{R}^2 . Then
- 2.