Chapter 2: Matrix Algebra

Section 2.9 - Dimension and Rank

Goal: To look at (wonderful!) consequences of working with bases.

Part I - Coordinate Systems

Observation: Let *H* be a subspace of \mathbb{R}^n with basis $\mathcal{B} = {\mathbf{b_1}, \ldots, \mathbf{b_p}}$. Let **x** be a vector in *H* such that

$$\mathbf{x} = c_1 \mathbf{b_1} + \dots + c_p \mathbf{b_p}$$

and

$$\mathbf{x} = d_1 \mathbf{b_1} + \dots + d_p \mathbf{b_p}$$

for scalars $c_1, \ldots, c_p, d_1, \ldots, d_p$. Then

Definition: Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_p}$ be a basis for a subspace H. For each \mathbf{x} in H, the coordinates of \mathbf{x} relative to \mathcal{B} are

Examples:

1.
$$\mathcal{B} = \left\{ \begin{bmatrix} 5\\-2 \end{bmatrix}, \begin{bmatrix} 10\\-3 \end{bmatrix} \right\}$$
 is a basis for \mathbb{R}^2 . If $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 4\\-1 \end{bmatrix}$, then what is \mathbf{x} ?

2. Let
$$H = \text{Span} \left\{ \mathbf{b_1} = \begin{bmatrix} -3\\1\\-4 \end{bmatrix}, \mathbf{b_2} = \begin{bmatrix} 7\\5\\-6 \end{bmatrix} \right\}$$
. Note that $\mathbf{b_1}, \mathbf{b_2}$ are linearly independent.
Thus, $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}\}$ is a basis for H . Let $\mathbf{y} = \begin{bmatrix} 11\\0\\7 \end{bmatrix}$. Is \mathbf{y} in H ? If so, find $[\mathbf{y}]_{\mathcal{B}}$.

Part II - The Dimension of a Subspace

Fact: If H is a subspace, then it may have multiple different bases. However, every basis has

Definition: The **dimension** of the zero subspace $\{0\}$ is defined to be 0. The **dimension** of a non-zero subspace H, denoted dim H, is the number of

Examples:

1. dim $\mathbb{R}^n =$

- 2. The dimension of a line through the origin ${\bf 0}$ in \mathbb{R}^3 is
- 3. The dimension of a plane through the origin ${\bf 0}$ in \mathbb{R}^3 is

4.
$$H = \operatorname{Span} \left\{ \mathbf{v_1} = \begin{bmatrix} 1\\1\\-2 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} 1\\3\\2 \end{bmatrix}, \mathbf{v_3} = \begin{bmatrix} 1\\-1\\-6 \end{bmatrix} \right\}$$

5.
$$H = \left\{ \begin{bmatrix} s \\ t \\ 0 \end{bmatrix} : s, t \text{ are in } \mathbb{R} \right\}$$

6.
$$H = \text{Span} \left\{ \mathbf{v_1} = \begin{bmatrix} 1 \\ -3 \\ 2 \\ -4 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} -3 \\ 9 \\ -6 \\ 12 \end{bmatrix}, \mathbf{v_3} = \begin{bmatrix} 2 \\ -1 \\ 4 \\ 2 \end{bmatrix}, \mathbf{v_4} = \begin{bmatrix} -4 \\ 5 \\ -3 \\ 7 \end{bmatrix} \right\}$$

The Basis Theorem: Let *H* be a subspace of \mathbb{R}^n and dim H = p. Then

- 1. Any linearly independent set of exactly p vectors in H
- 2. Any set of p vectors in H that spans H is

Examples:

1. dim
$$\mathbb{R}^2 = 2$$
. The set $\mathcal{B} = \left\{ \mathbf{x} = \begin{bmatrix} -1 \\ -3 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ is a linearly independent set of

2.
$$H = \left\{ \begin{bmatrix} s \\ t \\ 0 \end{bmatrix} : s, t \text{ are in } \mathbb{R} \right\}$$

True/False? \mathbb{R}^4 contains a 5-dimensional subspace H.