Chapter 2: Matrix Algebra

Section 2.9 – Dimension and Rank (Continued)

Part II - The Dimension of a Subspace (Continued)

Definition: The **rank** of a matrix A is the

Example: Let $A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix}$. Find: (a) dim Nul A; (b) dim Col A; (c) rank A

Note: For a matrix *A*:

1. dim(Nul A) =

2. dim $(\operatorname{Col} A) =$

The Rank Theorem: If a matrix A has n columns, then

 $\operatorname{rank} A + \operatorname{dim}(\operatorname{Nul} A) =$

True/False? A 3×3 matrix *B* can have Col B = Nul *B*.

Part III - Rank and the Invertible Matrix Theorem

The Invertible Matrix Theorem (continued!): Let A be an $n \times n$ matrix. The following statements are each equivalent to the statement that A is an invertible matrix.

- (m) The columns of A form a
- (n) Col A
- (o) $\dim(\operatorname{Col} A)$
- (p) $\operatorname{rank} A$
- (q) Nul A
- (r) $\dim(\operatorname{Nul} A)$

Proof of $(p) \implies (r) \implies (q)$:

Chapter 3: Determinants

Goal: Investigate an easy criterion to determine if a matrix is invertible.....a numerical test!

Section 3.1 – Introduction to Determinants

Definition/Recall: For a 1×1 matrix $A = [a_{11}]$, the **determinant** of A is defined to be

 $\det A = a_{11}.$

For a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, we have

We want to generalize this for $n \times n$ matrices!

A Magic Show: Let

$$A = \left[\begin{array}{rrrr} 1 & 2 & 0 \\ -1 & 3 & 2 \\ 5 & 0 & 2 \end{array} \right].$$

Let

- A_{ij} be the 2 × 2 submatrix obtained by removing row *i* and column *j* of *A*;
- $C_{ij} = (-1)^{i+j} \det(A_{ij}).$