Chapter 2: Matrix Algebra

Section 2.9 - Dimension and Rank (Continued)

Part II - The Dimension of a Subspace (Continued)
Definition: The rank of a matrix A is the

Example: Let $A=\left[\begin{array}{rrrrr}-2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3\end{array}\right]$. Find: (a) $\operatorname{dim} \operatorname{Nul} A$; (b) $\operatorname{dim} \operatorname{Col} A$; (c) $\operatorname{rank} A$

Note: For a matrix A :

1. $\operatorname{dim}(\operatorname{Nul} A)=$
2. $\operatorname{dim}(\operatorname{Col} A)=$

The Rank Theorem: If a matrix A has n columns, then

$$
\operatorname{rank} A+\operatorname{dim}(\operatorname{Nul} A)=
$$

True/False? A 3×3 matrix B can have $\operatorname{Col} B=\operatorname{Nul} B$.

Part III - Rank and the Invertible Matrix Theorem

The Invertible Matrix Theorem (continued!): Let A be an $n \times n$ matrix. The following statements are each equivalent to the statement that A is an invertible matrix.
(m) The columns of A form a
(n) $\operatorname{Col} A$
(o) $\operatorname{dim}(\operatorname{Col} A)$
(p) $\operatorname{rank} A$
(q) $\operatorname{Nul} A$
(r) $\operatorname{dim}(\operatorname{Nul} A)$

$$
\text { Proof of }(p) \Longrightarrow(r) \Longrightarrow(q) \text { : }
$$

Chapter 3: Determinants

Goal: Investigate an easy criterion to determine if a matrix is invertible.....a numerical test!

Section 3.1 - Introduction to Determinants

Definition/Recall: For a 1×1 matrix $A=\left[a_{11}\right]$, the determinant of A is defined to be

$$
\operatorname{det} A=a_{11} .
$$

For a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, we have

We want to generalize this for $n \times n$ matrices!

A Magic Show: Let

$$
A=\left[\begin{array}{rrr}
1 & 2 & 0 \\
-1 & 3 & 2 \\
5 & 0 & 2
\end{array}\right] .
$$

Let

- $A_{i j}$ be the 2×2 submatrix obtained by removing row i and column j of A;
- $C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$.

