

Chapter 2: Matrix Algebra

Section 2.3 – Characterizations of Invertible Matrices

Recall: Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a linear transformation with standard matrix A . Then T is invertible if and only if A^{-1} exists.

Food For Thought: Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a linear transformation with standard matrix A .

1. T is 1-1 $\implies T$ is invertible and maps onto \mathbb{R}^n .

2. T maps \mathbb{R}^n onto $\mathbb{R}^n \implies T^{-1}$ exists, T^{-1} is 1-1, and T^{-1} maps onto \mathbb{R}^n .

3. T is invertible $\implies T$ is 1-1 and maps onto \mathbb{R}^n .

Section 2.6 – The Leontief Input–Output Model

Goal: To see an application of inverses!

Example: Consider the following economy with three sectors:

Question: What amounts are consumed by the manufacturing sector if it produces 100 units?

In general, if x_1, x_2, x_3 denote the planned outputs of manufacturing, agriculture, and services, respectively, then

- x_1c_1 = the intermediate demands of manufacturing;
- x_2c_2 = the intermediate demands of agriculture;
- x_3c_3 = the intermediate demands of services.

The Leontif Input-Output Model:

Question: In our example, if the final demand is 50 units for manufacturing, 30 units for agriculture, and 20 units for services, then what is the production level \mathbf{x} ?

Theorem: Let C be the consumption matrix for an economy and \mathbf{d} be the final demand. If C and \mathbf{d} have non-negative entries and if each column sum of C is less than 1, then $(I - C)^{-1}$ exists and the production vector

$$\mathbf{x} = (I - C)^{-1}\mathbf{d}$$

has non-negative entries and is the unique solution of $\mathbf{x} = C\mathbf{x} + \mathbf{d}$.