

Chapter 1: Linear Equations in Linear Algebra

Section 1.9 – The Matrix of a Linear Transformation (Continued)

Recall: If $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is linear and \mathbf{x} is in \mathbb{R}^n , then

$$T(\mathbf{x}) = x_1 T(\mathbf{e}_1) + \cdots + x_n T(\mathbf{e}_n).$$

That is,

Warm-Up Exercises: Find the standard matrix A for the linear transformations $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$.

1. T is the horizontal shear leaving \mathbf{e}_1 unchanged and mapping $\mathbf{e}_2 \mapsto \mathbf{e}_2 + 3\mathbf{e}_1$.

2. T rotates each point in \mathbb{R}^2 about the origin through φ radians, counter-clockwise.

3. T first reflects points through the horizontal x_1 -axis and then reflects points through the line $x_2 = x_1$.

Properties of Transformations: We now investigate special properties of transformations and then focus on these for linear transformations.

Definition: Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a transformation.

1. T is said to be **onto** if each \mathbf{b} in \mathbb{R}^m is the image of

2. T is said to be **one-to-one** if each \mathbf{b} in \mathbb{R}^m is the image of

Notes:

1. T is onto \mathbb{R}^m if $T(\mathbf{x}) = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^m .
2. T is 1-1 if $T(\mathbf{x}) = \mathbf{b}$ has a unique solution or no solution for each \mathbf{b} in \mathbb{R}^m .

Examples:

1. Let $T : \mathbb{R}^4 \rightarrow \mathbb{R}^3$ be the linear transformation with standard matrix

$$A = \begin{bmatrix} 1 & -2 & 7 & 0 \\ 0 & 1 & -5 & 3 \\ 0 & 0 & 0 & 8 \end{bmatrix}.$$

2. Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the projection onto the x_1 -axis. This is linear with standard matrix

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

Theorem: Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a linear transformation. Then T is 1-1 if and only if $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

Theorem: Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a linear transformation with standard matrix A .

1. T maps *onto* \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m .
2. T is 1-1 if and only if the columns of A are linearly independent.

Example: Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be given by the rule

$$T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} 2x_1 + 3x_2 \\ -x_1 \\ x_1 + 5x_2 \end{bmatrix}.$$

Show that T is linear. Is T 1-1? Is T onto?