

Chapter 1: Linear Equations in Linear Algebra

Section 1.8 – Introduction to Linear Transformations (Continued)

Matrix Transformations: Let A be an $m \times n$ matrix. We can define the transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ by $T(\mathbf{x}) = A\mathbf{x}$ for each \mathbf{x} in \mathbb{R}^n . Note

Examples:

1. Let $A = \begin{bmatrix} 1 & -4 & 2 & -1 \\ -2 & 6 & 4 & -1 \end{bmatrix}$. Define $T : \mathbb{R}^4 \rightarrow \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$. Thus,

(a) Let $\mathbf{u} = \begin{bmatrix} -1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$. Find $T(\mathbf{u})$.

(b) Let $\mathbf{b} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Find \mathbf{x} in \mathbb{R}^4 such that $T(\mathbf{x}) = \mathbf{b}$. Is \mathbf{x} unique?

2. Define $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$ where $A = \begin{bmatrix} 2 & -3 \\ -6 & 9 \end{bmatrix}$. Let $\mathbf{y} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$. Is \mathbf{y} in the range of T ?

We now consider special transformations!

Example: Define $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$ where $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Thus,

$$T \left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}.$$

Definition: A transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is called **linear** if

Examples:

1. Consider $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ given by $T(\mathbf{x}) = 2\mathbf{x}$.

2. Let A be an $m \times n$ matrix. Define $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ by $T(\mathbf{x}) = A\mathbf{x}$. Then for all \mathbf{x}, \mathbf{y} in \mathbb{R}^n and scalars c we have

Properties: Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a linear transformation.

Examples:

1. $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ given by $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 3|x_1| \\ x_1 + x_2 \end{bmatrix}$ is not linear

2. Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be reflection through $x_2 = 0$:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}.$$

Let c, d be scalars and \mathbf{x}, \mathbf{y} be in \mathbb{R}^2 .

3. Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be a linear transformation such that

$$T \left(\begin{bmatrix} 5 \\ 5 \end{bmatrix} \right) = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \quad \text{and} \quad T \left(\begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

What is $T \left(\begin{bmatrix} 3 \\ 1 \end{bmatrix} \right)$?