## Chapter 1: Linear Equations in Linear Algebra

## Section 1.7 – Linear Independence (Continued)

Warm-Up: Let 
$$\mathbf{v_1} = \begin{bmatrix} 1 \\ -5 \\ -3 \end{bmatrix}$$
,  $\mathbf{v_2} = \begin{bmatrix} -2 \\ 10 \\ 6 \end{bmatrix}$ ,  $\mathbf{v_3} = \begin{bmatrix} 2 \\ -9 \\ h \end{bmatrix}$ .

- (a) For what value(s) of h is  $\mathbf{v_3}$  in Span $\{\mathbf{v_1}, \mathbf{v_2}\}$ ?
- (b) For what value(s) of h is  $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$  linearly dependent?

January 24, 2020

Food for Thought Example: Last class we saw - if the set  $S = \{\mathbf{v_1}, \dots, \mathbf{v_p}\}$  is linearly dependent with  $\mathbf{v_1} \neq \mathbf{0}$ , then some  $\mathbf{v_j}$  (with j > 1) is a linear combination of  $\mathbf{v_1}, \dots, \mathbf{v_{j-1}}$ . This <u>does not</u> imply that *every* vector in S is a linear combination of the preceding vectors. For example,

$$S = \left\{ \mathbf{v_1} = \begin{bmatrix} 3 \\ 2 \\ -4 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} -6 \\ 1 \\ 7 \end{bmatrix}, \mathbf{v_3} = \begin{bmatrix} 3 \\ 7 \\ -5 \end{bmatrix}, \mathbf{v_4} = \begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix} \right\}$$

**Theorem:** If  $S = \{\mathbf{v_1}, \dots, \mathbf{v_p}\}$  is a set of vectors in  $\mathbb{R}^n$  and p > n, then S is linearly dependent.

**Theorem:** If  $S = \{\mathbf{v_1}, \dots, \mathbf{v_p}\}$  in  $\mathbb{R}^n$  contains  $\mathbf{0}$ , then S is linearly dependent.

## Examples:

1. Determine if the given set is linearly dependent.

(a) 
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
,  $\begin{bmatrix} 4 \\ -1 \end{bmatrix}$ ,  $\begin{bmatrix} -2 \\ 2 \end{bmatrix}$ 

(b) 
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
,  $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ ,  $\begin{bmatrix} 1 \\ 5 \\ 8 \end{bmatrix}$ 

(c) 
$$\begin{bmatrix} -2\\4\\6\\10 \end{bmatrix}, \begin{bmatrix} -2/3\\4/3\\2\\1 \end{bmatrix}$$

2. In the matrix  $A = \begin{bmatrix} 4 & 1 & 6 \\ -7 & 5 & 3 \\ 9 & -3 & 3 \end{bmatrix}$ , note that  $\mathbf{a_1} + 2\mathbf{a_2} = \mathbf{a_3}$ . Find a non-trivial solution to  $A\mathbf{x} = \mathbf{0}$ .

## Section 1.8 – Introduction to Linear Transformations

**Goal:** To interpret A**x** as A "acting on" **x**.

**Definition:** A transformation (or function of mapping) T from  $\mathbb{R}^n$  to  $\mathbb{R}^m$  is a rule that assigns to each  $\mathbf{x}$  in  $\mathbb{R}^n$  a vector  $T(\mathbf{x})$  in  $\mathbb{R}^m$ .

**Example:** Consider the transformation  $T: \mathbb{R}^2 \to \mathbb{R}^3$  defined by the rule

$$T\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = \left[\begin{array}{c} x_2 \\ x_1 \\ x_1 + x_2 + 3 \end{array}\right].$$