Chapter 1: Linear Equations in Linear Algebra

Section 1.4 – The Matrix Equation Ax = b

Goal: Explore linear combinations with matrix/vector products.

Definition: If A is an $m \times n$ matrix with columns $\mathbf{a_1}, \ldots, \mathbf{a_n}$ and \mathbf{x} is in \mathbb{R}^n , then

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a_1} & \cdots & \mathbf{a_n} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} =$$

Note: The *i*th entry in $A\mathbf{x}$ is the sum of the products of corresponding entries from row *i* of A and from the vector \mathbf{x} .

Examples:

1.
$$\begin{bmatrix} 5 & 0 & 2 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} =$$

$$2. \left[\begin{array}{rrr} 1 & -2 \\ -1 & 1 \\ 0 & 3 \end{array} \right] \left[\begin{array}{r} 4 \\ 5 \end{array} \right] =$$

3.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} =$$

Properties of Ax: If A is an $m \times n$ matrix and \mathbf{u}, \mathbf{v} are in \mathbb{R}^n and c is a scalar, then

1.
$$A(\mathbf{u} + \mathbf{v}) =$$

2.
$$A(c\mathbf{u}) =$$

Example:

$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \left(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right) =$$

We now make connections with linear systems!

Example: The linear system

$$2x_1 + x_2 - x_3 = 5$$
$$x_2 + 8x_3 = 1$$

has the same solution set as

Theorem: If A is an $m \times n$ matrix with columns $\mathbf{a_1}, \ldots, \mathbf{a_n}$ and if **b** is in \mathbb{R}^m , then

 $A\mathbf{x} = \mathbf{b}$

has the same solution set as

Fact: $A\mathbf{x} = \mathbf{b}$ has a solution if and only if **b** is a linear combination of the columns of A. That is, $A\mathbf{x} = \mathbf{b}$ has a solution if and only if

Question: What if we want **b** is in the span of the columns of A for <u>all</u> possible **b**?

Example: Let $A = \begin{bmatrix} 2 & -1 \\ -10 & 5 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ be in \mathbb{R}^2 . Is $A\mathbf{x} = \mathbf{b}$ consistent for <u>all</u> possible **b**?

Definition: A set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ in \mathbb{R}^m spans \mathbb{R}^m if <u>every</u> vector in \mathbb{R}^m is a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_p$.

Theorem: Let A be an $m \times n$ matrix. The following are equivalent:

- 1. For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- 2. Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- 3. The columns of A span \mathbb{R}^m .
- 4. A has a pivot position in every row.

Example:
$$\mathbf{u_1} = \begin{bmatrix} 2 \\ -10 \end{bmatrix}$$
 and $\mathbf{u_2} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$ do not span \mathbb{R}^2 since $\begin{bmatrix} 2 & -1 \\ -10 & 5 \end{bmatrix}$