Chapter 1: Linear Equations in Linear Algebra

Section 1.3 – Vector Equations

Definitions: Fix a positive integer n.

- 1. A **vector** (in \mathbb{R}^n) is an <u>ordered</u> n-tuple of real numbers
- $2. \mathbb{R}^n$

3.
$$\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 is the

- 4. Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ and $\mathbf{y} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$ be in \mathbb{R}^n and c be a real number.
 - The \mathbf{sum} of \mathbf{x} and \mathbf{y} is
 - The scalar multiple of x by c is

Examples:

1. Consider
$$\mathbf{x}=\left[\begin{array}{c}2\\-1\end{array}\right]$$
 and $\mathbf{y}=\left[\begin{array}{c}1\\3\end{array}\right]$ in $\mathbb{R}^2.$ Then

January 13, 2020

2. Consider
$$\mathbf{x} = \begin{bmatrix} 5 \\ -1 \\ 0 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ in \mathbb{R}^3 . Then

Properties of \mathbb{R}^n : For all $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in \mathbb{R}^n and all scalars c, d in \mathbb{R} , we have:

1.
$$x + y =$$

$$2. \ (\mathbf{x} + \mathbf{y}) + \mathbf{z} =$$

3.
$$x + 0 =$$

4.
$$x - x =$$

5.
$$c(\mathbf{x} + \mathbf{y}) =$$

6.
$$(c+d)x =$$

7.
$$c(dx) =$$

8.
$$1x =$$

Linear Combinations and Spanning Vectors

Goal: To connect vectors and linear systems of equations.

Definition: Given vectors $\mathbf{v_1}, \dots, \mathbf{v_p}$ in \mathbb{R}^n and scalars c_1, \dots, c_p in \mathbb{R} , the vector \mathbf{y} given by

$$\mathbf{y} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \dots + c_p \mathbf{v_p}$$

is called a

Example: Let
$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $\mathbf{v_3} = \begin{bmatrix} -5 \\ -1 \\ -1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$. Is \mathbf{b} a linear combination of $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$?

January 13, 2020

Fact: b is a linear combination of a_1, \ldots, a_n if and only if there is a

Definition: Let $\mathbf{v_1}, \dots, \mathbf{v_p}$ be vectors in \mathbb{R}^n . The subset of \mathbb{R}^n spanned (or generated) by $\mathbf{v_1}, \dots, \mathbf{v_p}$ is

Examples:

1.

2. Is
$$\mathbf{b} = \begin{bmatrix} 1 \\ -4 \\ -7 \end{bmatrix}$$
 in Span $\left\{ \mathbf{u_1} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \mathbf{u_2} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\}$?

3. Is
$$\mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 2 \\ 5 \end{bmatrix}$$
 in Span $\left\{ \mathbf{u_1} = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}, \mathbf{u_2} = \begin{bmatrix} -3 \\ 7 \\ 4 \\ -6 \end{bmatrix} \right\}$?

- 4. Let \mathbf{v} and \mathbf{w} be non-zero vectors in \mathbb{R}^3 where \mathbf{w} is not a scalar multiple of \mathbf{v} . Then:
 - Span $\{\mathbf{v}\}$ is the line in \mathbb{R}^3 through \mathbf{v} and $\mathbf{0}$;
 - Span $\{\mathbf{v}, \mathbf{w}\}$ is the plane in \mathbb{R}^3 containing $\mathbf{v}, \mathbf{w}, \mathbf{0}$.

January 13, 2020 4