Chapter 1: Linear Equations in Linear Algebra

Section 1.1 – Systems of Linear Equations

We begin our investigation of linear systems of equations by setting up the standard terminology.

Definitions:

1. A linear equation in the variables x_1, \ldots, x_n is an equation that can be written in the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

where

- 2. A system of linear equations (or linear system) is a
- 3. A solution to a linear system is a list (s_1, s_2, \ldots, s_n) of numbers that makes each equation a true statement when
- 4. The solution set of a linear system is the set of all possible solutions.
- 5. Two linear systems are called **equivalent** if they have the same

Examples:

- 1. $5x_1 6x_2 + 3 = x_3$ and $x_2 = 2\sqrt{6} 3x_1 + x_3$ are
- 2. $x_1x_3 + x_4 = 6$ and $\sqrt{x_1} + 5 = x_2$ are

3.

$$5x_1 - 6x_2 - x_3 = -3$$

$$3x_1 + x_2 - x_3 = 2\sqrt{6}$$

$$x_1 - x_3 = 10$$

4. (1, 0, -1) is a solution to the linear system

$$x_1 - 2x_2 + x_3 = 0$$

$$2x_2 - 8x_3 = 8$$

$$5x_1 - 5x_3 = 10$$

Question: How large can a solution set be?

Answer: Think of lines in the plane!

 $\ell_1 : a_1 x_1 + a_2 x_2 = b_1$ $\ell_2 : \widetilde{a_1} x_1 + \widetilde{a_2} x_2 = \widetilde{b_2}$

We have three possibilities:

• Case 1: ℓ_1 and ℓ_2 intersect in *one* point

• Case 2: ℓ_1 and ℓ_2 coincide

• Case 3: ℓ_1 and ℓ_2 are parallel

The situation seen with lines is true more generally:

General Fact: A system of linear equations has:

- 1. no solution, OR
- 2. exactly one (unique) solution, OR
- 3. infinitely many solutions.

Definitions: A linear system is called

- 1. **consistent** if it has
- 2. **inconsistent** if it has

Question: Given a linear system, how do we find an equivalent linear system which is easier to solve?

Answer: Use matrices! These provide a compact book-keeping tool.

Definition: A matrix of size $m \times n$ is a

Example/Terminology: The linear system

 $x_1 - 3x_2 + 4x_3 = -4$ $3x_1 - 7x_2 + 7x_3 = -8$ $-4x_1 + 6x_2 - x_3 = 7$

has coefficient matrix

and $\mathbf{augmented}\ \mathbf{matrix}$

Observe: When we solve a linear system we replace it with an equivalent one which is easier to solve. To find the replacement we only need to keep track of coefficients in a systematic way. We can do **3** valid operations only to the augmented matrix when doing this:

Elementary Row Operations of a Matrix:

- 1. Replacement:
- 2. Interchange:
- 3. Scaling:

Definition: Two matrices are called **row equivalent** if there is a sequence of *elementary row operations* that transforms one matrix into the other.