Lie's third theorem

<u>bef</u>: A <u>Lie group</u> G is a group that is also a smooth manifold such that the (algebraic) maps $\mu: G \times G \to G$ (g,h) \mapsto gh, and $2: G \to G$, $g \mapsto g^{-1}$, one smooth. (Can use mulaise function then to show invesse is automatically smooth.)

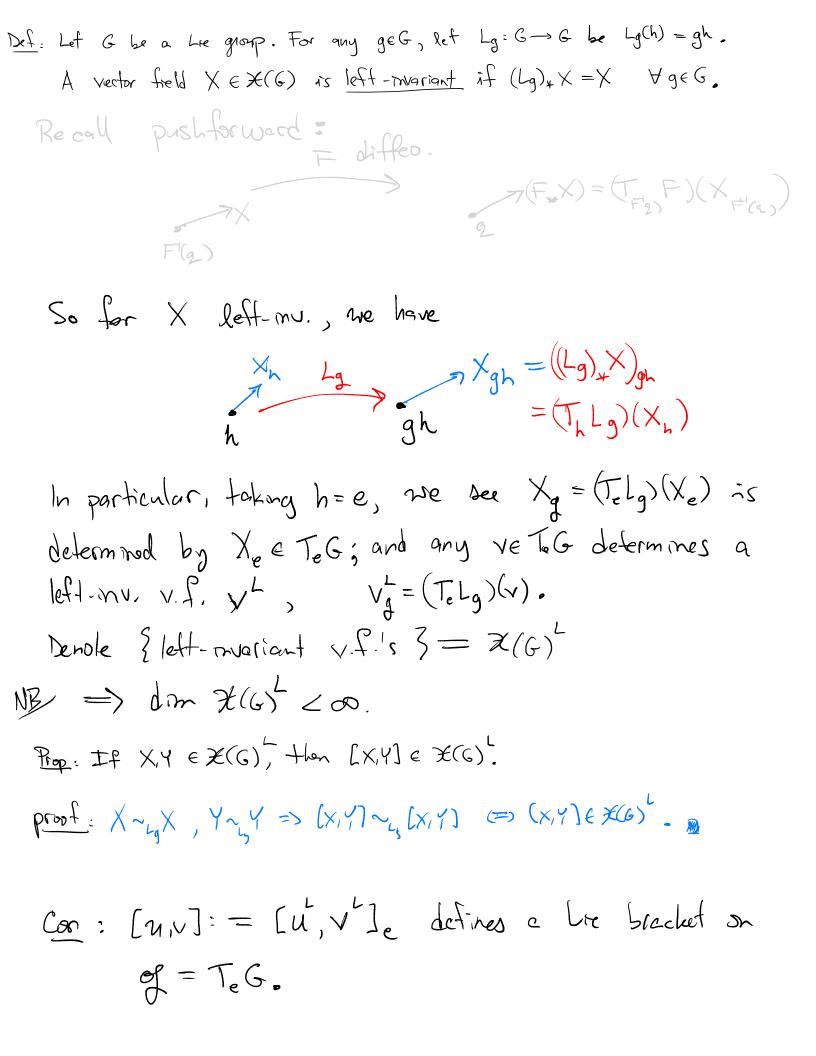
Net: A Lie algebra is a vector space of with a bilinear binary operation denoted [,]: of x of \rightarrow of, (X,Y) \mapsto [X,Y], that satisfies

$$(I) [X,Y] = -[Y,X]$$

(2) [X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0

$$E_X : \mathcal{X}(M), (V, [,]=0), (\mathbb{R}^3, \times), (End V, [,]comm.)$$

(and as we'll soon set TeG, where G is Lie grp)
 $\mathbb{R} = identity dit.$



$$\begin{split} \underline{\mathsf{PXO}}_{\mathsf{G}} = [\mathbf{R}, +], \ \mathbf{g} = \mathsf{T}_{\mathsf{R}} \mathbf{R} = \mathbf{R}, \ [,] = 0 \quad (\mathsf{dum} - \mathsf{L}) \ \mathbf{j} \ \mathbf{similarly} \ \mathbf{br} \ \mathbf{G} = \mathsf{S}^{1}. \\ \hline \mathbf{O} \ \mathbf{G} = \mathsf{GL}_{\mathsf{n}}(\mathbf{R}) = \mathsf{Mal}_{\mathsf{n}\times\mathsf{n}} = \mathbb{R}^{3} \quad (\mathsf{open lenket}) \\ \Rightarrow \ \mathbf{g} = \mathsf{T}_{\mathsf{T}} \mathbf{G} \cong \mathsf{Mal}_{\mathsf{n}\times\mathsf{n}} = \mathfrak{glh} \\ \\ \underline{\mathsf{Brachel}} \ \mathbf{Z} \ \mathsf{Take} \ \mathsf{A} \in \mathfrak{efln} \ (\mathsf{A}) = \mathsf{T}_{\mathsf{L}} \mathsf{g}(\mathsf{A}) = \mathsf{gA} \quad \mathfrak{cost} \neq \mathsf{und} \mathsf{fir} \\ \mathsf{To unpack this, take } (\mathsf{glda}(\mathsf{l}) \ \mathsf{coordinates} \ \mathsf{X}_{\mathsf{l}} \ \mathsf{on} \ \mathsf{G}, \\ \mathsf{So basis} \ \mathsf{fx} \ \mathsf{tanged} \ \mathsf{space} \ \mathsf{is} \ \mathsf{S} \ \mathsf{S} \ \mathsf{Spach} \ \mathsf{gct} \\ & \mathsf{(A}, \mathsf{B}'](\mathsf{g}) = \mathsf{g}(\mathsf{A} \mathsf{B} - \mathsf{B} \mathsf{A}), \ \mathsf{so} \ \mathsf{L}, \ \mathsf{I} = \mathsf{commutator} \ \mathsf{cond} \ \mathsf{functor} \ \mathsf{A} \\ \\ & \mathsf{Imp} \ \mathsf{Led} \ \mathsf{and} \ \mathsf{furmulan} \ \mathsf{in} \ \mathsf{coordinates} \ \mathsf{X}_{\mathsf{l}} \ \mathsf{on} \ \mathsf{G}, \\ & \mathsf{fn} \ \mathsf{log}(\mathsf{and} \ \mathsf{ont} \ \mathsf{furmulan}), \ \mathsf{far} \ \mathsf{far} \ \mathsf{aget} \ \mathsf{far} \ \mathsf{and} \ \mathsf{and} \ \mathsf{far} \ \mathsf{and} \ \mathsf$$

smooth.

Finally, we sketch how one can associate to any finite dimensional his algebra
of a Lie group G with that Lie algebra.
This (Ado's thronem) Let of be a finite dim. Lie algebra. Then Z n >0
and an injective Lie algebra homomorphism of
$$\longrightarrow$$
 off(h).
Therefore, we may view of as a Lie subalgebra of off(h) = Lie (GL(h)). By a prior
therefore, we may view of as a Lie subalgebra of off(h) = Lie (GL(h)). By a prior
therefore, we may view of as a Lie subalgebra of off(h) = Lie (GL(h)). By a prior
theorem, Z a Lie subgroup G C GL(h) whose Lie algebra is of.
Remark : Lie subgroups of GL(h) are called "modifix Lie groups". So every findem. of is
the Lie algebra of a matrix Lie group. However, there are Lie groups G which
are not isomorphic to any modifix Lie group (compose Ado's theorem).

Finally, consider now the following: does every hie algebra homomorphism $J \longrightarrow b$ arise as the tangent map $f_{*} = Tep of a$ Lie group homom. $f: G \longrightarrow H$? Similar to discussion above, the topology comes into play:

e.g.
$$id: \mathbb{R} \to \mathbb{R}$$
 is a the algebra homomorphism. And $\mathbb{R} = Lie(S')$ and $\mathbb{R} = Lie(\mathbb{R})$. But
 \mathcal{F} any non-trivial the group homomorphisms $S' \to \mathbb{R}$. (Why?)
(But $\mathbb{R} \to S'$, $t \mapsto e^{it}$ is a homomorphism whose derivative at 0 is $id_{\mathbb{R}}$.)
Thm: Let G, H be the groups woll the algebras of and h , respectively. If G is
Simply connected, then every the algebra homomorphism of $\to h$ is the tangent
map of a unique the group homomorphism.

proof ____ omitted.