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1 Motivation

Why are hyperbolic groups interesting?

• From a probabilistic point of view, most1 finitely generated groups are

hyperbolic.

• Hyperbolic groups have solvable word problem2.

• As a result, “most” finitely generated groups have solvable word prob-

lem.

We use geometric techniques to prove the second point.

1The underlying statistical model requires that the generating set {a1, . . . , an} and the
number of relators be fixed. Next, set an upper bound l on the word length of each relator.
Finally, for each relator, choose a word at random (uniformly and independently) from
the set of reduced words over {a1, . . . , an} of length at most l.[1]

2Given a group G = ⟨S |R⟩ and an arbitrary word w ∈ S∗, is w =G 1? The word
problem is undecidable.
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2 Cayley Graphs

Intuitively: A Cayley graph is a graph that models the multiplication of a

group G.

• Vertices are labelled by elements of G.

• Edges are labelled by elements of the generating set S of G.

Example. Here are two distinct Cayley graphs for the group (Z,+).

Figure 1: The Cayley graph Cay{1}(Z).

Figure 2: The Cayley graph Cay{1,2}(Z). (Notice how the redundant gener-
ator added “extra” edges to the graph.)

Notice that Cay{1}(Z) and Cay{1,2}(Z) are not isomorphic as graphs. So,

Cayley graphs are not unique.
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3 Geodesic Metric Spaces

We want to associate a group G to a metric space. We do this by metrizing

X = CayS(G). In particular, it is desirable to turn X into a geodesic metric

space.

Definition. Let (X, d) be a metric space and let L ∈ R≥0. A path p between

points x, y in X is geodesic if

1. there exists an isometric embedding from [0, L] → p and

2. if p is the shortest path between x and y.

Definition. A space (X, d) is geodesic if for any pair of points x, y ∈ X, there

exists a geodesic path between x and y.

Metrizing X = CayS(G):

• Identify each edge in X with the unit interval [0, 1].

• Define the distance between two vertices x and y to be the length

of the shortest edge path connecting x and y.3

We now have a way to associate a geodesic metric space to any (finitely

generated) group G.

3This is commonly referred to as the path or word metric.
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4 Hyperbolic Groups

Definition. A triangle xyz is geodesic if xy, yz, xz are geodesic paths.

Definition. Let δ ∈ R≥0. A triangle xyz is δ−slim if the δ nbhd of xy and

the δ nbhd of xz cover all of xyz.

Definition. A geodesic metric space (X, d) is hyperbolic (or δ−hyperbolic) if

there exists δ ∈ R≥0 such that all geodesic triangles in X are δ−slim.

Figure 3: Geodesic triangles form tripods in trees.
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Figure 4: Euclidean space is not δ−hyperbolic.

Definition. A groupG is hyperbolic if its cayley graph CayS(G) is δ−hyperbolic.

(Note: Implicit in this definition is that G is necessarily finitely generated if

it is hyperbolic.)

A PROBLEM WITH THIS DEFINITION:

• We already know that Cayley graphs are not unique!

• Given two distinct cayley graphs X and X ′ of G, what if X is

hyperbolic but X ′ is not?

It turns out that this second point can’t happen, so we have a well-defined

definition. Let’s see why...
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5 Quasi-Isometric Embeddings

Definition. Let (M1, d1) and (M2, d2) be two metric spaces and let f : M1 →
M2. Then f is a quasi-isometric embedding if there exist K,C ∈ R+ such

that
1

K
d2(f(x), f(y))− C ≤ d1(x, y) ≤ Kd2(f(x), f(y)) + C

for all x, y ∈ M1.

Quasi-isometric embeddings turn out to be a very important tool in geometric

group theory. Essentially, we want to study properties that are invariant

under QI embeddings.

Intuitively:

• Quasi-isometric embeddings are like isometric embeddings with some

tolerance for “error” on a small enough scale, i.e., quasi-isometries

respect large scale geometry.

• If X ∼QI Y , then if we zoom out far enough these two spaces should

“look” the same.

Examples:

• Recall the two Cayley graphs given earlier in figures 1 and 2.

• Set M1 = Cay{1}(Z) and M2 = Cay{1,2}(Z).

• Then taking f : M1 → M2 to be an embedding with K = 1 and C = 0

is a quasi-isometric embedding.

• Or, define g : M2 → M1 by mapping black edges to black edges and

a blue edge to its neighbouring black edges in the obvious way. Take

K = 2 and C = 0. This is also a QI embedding.
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Some other examples:

• All finite graphs (with path metric) are quasi-isometric.

• R and Z are quasi-isometric via the map f : R → Z defined by f : x 7→
⌊x⌋.

• Z and Z2 are not quasi-isometric (idea of proof: asymptotic argument...

show that balls in Z2 grow much faster than those in Z, so there cannot

exist values K,C that would allow you to set a bound on the corre-

sponding distances).

Theorem. [2] Let X and X ′ be two distinct cayley graphs for a group G.

Then X ∼QI X
′.

Theorem. [2] If X ∼QI X ′, then X is hyperbolic if and only if X ′ is

hyperbolic.

The proofs for both of these theorems require very careful consideration of

δ−slim triangles and QI embeddings. (Very LONG and cumbersome chains

of inequalities!)

Now we have a sensible definition for what it means for a group to be hyper-

bolic. The next goal is to show that hyperbolic groups have Dehn presenta-

tion using a geometric argument.
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6 Dehn Presentation

Definition. Let S be a finite alphabet and n ∈ N. The group presentation

⟨S |u1v
−1
1 = · · · = unv

−1
n = 1⟩

is a Dehn presentation if:

• For all 1 ≤ i ≤ n, the length of the word vi is shorter than the length

of the word ui, and

• Any freely reduced word non empty w over S ∪ S−1 such that w =G 1

must contain a subword of the form ui or u
−1
i .

Groups with Dehn presentation have solvable word problem.

Shortening algorithm:

• Choose a word w ∈ G.

• Freely reduce w.

• Check to see if w contains a subword of the form ui or u
−1
i . (This can

always be done because w is finite.) If no, then w ̸=G 1.

• If yes, replace the occurrence of ui with vi. Then w = w′viw
′′. Re-

peat procedure on the word w′viw
′′. This always terminates because

replacing ui with vi reduces the length of the word.

Finally, given a hyperbolic group G we construct a Dehn presentation for G

by following non-geodesic paths in CayS(G).
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7 Taming Quasi-Geodesics

Think of a “non-geodesic” path as the image of some quasi-isometric embed-

ding γ : [0, L] → X. Such a path is commonly referred to as a quasi-geodesic.

We are interested in a special kind of quasi-geodesic path:

Definition. A path p in X is k−local geodesic if every subpath q of p with

|q| ≤ k is geodesic.

Intuitively: k−local geodesic paths are almost geodesic (they are geodesic on

a small enough scale).

The following proof offers one example of how the geometry of δ−slim trian-

gles can be used to obtain a “nice” property of hyperbolic spaces.

Lemma 1. [3] Let X be δ−hyperbolic. Set k > 8δ. Suppose p is a k−local

geodesic path in X. Then there exists a geodesic path q sharing the same

end points as p such that p is contained in a 2δ nbhd of q.

In other words, in hyperbolic spaces, k−local geodesics stay close to geodesics.

Proof. First, note that the path p can be described by the image of a quasi-

isometric embedding γ : [0, L] → X.
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Choose M to be a point on p having maximal distance from q. Then there

exists some tM ∈ [0, L] such that γ(tM) = M .

Either:

1. d(0, tM) < 4δ or

2. d(0, tM) > 4δ (and d(tM , L) > 4δ).

Case 1: Suppose d(0, tM) < 4δ. Fix a point A on p such that

dX(M,A) > 4δ,

and p|I,A is geodesic.4

Note: This is possible because p must have length greater than 8δ since it’s

a k−local geodesic.

Now, choose a point B on q with minimal distance from A.

4Notation: p|I,A denotes the subarc of p with end points I = γ(0) and A.
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Consider the triangle △IAB. This is a geodesic triangle. So, there exists a

point x on either IB or AB such that

dX(M,x) ≤ δ

(by the definition of δ−slim triangle).

Suppose x ∈ AB, then

dX(M,x)− dX(A, x) = dX(M,A)

> 4δ by previous assumption

=⇒ dX(A, x) > 3δ (⋆)
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Also,

dX(M,B)− dX(A,B) ≤ (dX(M,x) + dX(x,B))− (dX(A, x)− dX(x,B))

= dX(M,x)− dX(A, x)

< δ − 3δ by (⋆)

< 0,

which contradicts the fact that M was chosen to have maximal distance from

the path q. So, x must lie on IA.

Now, for any other point y ∈ p,

dX(y, x) ≤ dX(M,x) ≤ δ.

Therefore, p is contained in a δ−nbhd of q.

The proof for case 2 is omitted. For complete proof, see [3]

Lemma 2. [2] Let X be a δ−hyperbolic space. Any closed loop γ in X

contains a subarc p such that |p| ≤ 8δ and p is not geodesic.

Proof. By contradiction. Use lemma 1.

Theorem. [4] If G is hyperbolic, then G admits a Dehn presentation.

Proof. We can assume G has finite generating set S and X = CayS(G) is

δ−hyperbolic.

Step 1: Define a procedure to construct a set of Dehn relators:
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• Fix k > 8δ, and define the set

Wk = {w ∈ S∗ |w is freely reduced and |w| ≤ k}.

• Let p(w) denote the path in X associated to the word w.

• For each w ∈ Wk, decide if p(w) is geodesic or not. (Note: Wk is a

finite set so this procedure terminates.)

• If p(w) is not geodesic, set w = ui. There exists a word w′ ∈ Wk such

that p(w′) is geodesic and shares the same end points as p(w). Set

w′ = vi.

• As a result, ui = vi, or equivalently, uiv
−1
i = 1.

• When the procedure terminates, we obtain a list of relators

R = {u1v
−1
1 , . . . , unv

−1
n }.

Step 2: Verify the presentation ⟨S |R⟩ is a Dehn presentation and

that G ∼= ⟨S |R⟩.

• If w =G 1, then we want to show that w ∈≪ R ≫.

• Induct on the length of w.

• Base case: |w| = 0, i.e., w is the empty word.

• Inductive step: Suppose all words w =G 1 of length at most L are

contained in ≪ R ≫.

• Let w =G 1 have length L + 1. Since w =G 1, p(w) forms a cycle or a

closed loop in X.

• By lemma 2, p(w) contains a non-geodesic subarc γ of length less than

8δ.
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• By construction, the arc γ corresponds to a word ui.

• So, w = w′uiw
′′ = w′viw

′′, but |vi| < |ui|, so |w′viw
′′| < L + 1. By

inductive hypothesis, w′viw
′′ ∈ ≪ R ≫.

• Now, w′uiv
−1
i w′−1 ∈≪ R ≫ (by definition of normal closure). So,

w′uiv
−1
i w′−1 · w′viw

′′ = w′uiv
−1
i viw

′′

= w′uiw
′′ ∈ ≪ R ≫ .

• Notice that, in the induction, we have also verified that if w =G 1,

then w contains a subword of the form ui, so ⟨S |R⟩ is indeed a Dehn

presentation for G.

8 Examples of Hyperbolic Groups

• Any finite group.

• Finitely generated free groups.

• Fundamental group of compact negatively-curved Riemannian mani-

fold.

• Virtually cyclic groups, e.g., infinite dihedral group.5

• Virtually free groups, e.g., F ⋊H, where F is free and H is finite, or

H ∗K, where H and K are finite.

5This is a result of the fact: If H is a finite index subgroup of G, then G ∼QI H.
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