Hyperbolic Groups (Presentation Notes)

Dana Kapoostinsky

March 2024

1 Motivation

Why are hyperbolic groups interesting?

- From a probabilistic point of view, most ${ }^{1}$ finitely generated groups are hyperbolic.
- Hyperbolic groups have solvable word problem ${ }^{2}$.
- As a result, "most" finitely generated groups have solvable word problem.

We use geometric techniques to prove the second point.

[^0]
2 Cayley Graphs

Intuitively: A Cayley graph is a graph that models the multiplication of a group G.

- Vertices are labelled by elements of G.
- Edges are labelled by elements of the generating set S of G.

Example. Here are two distinct Cayley graphs for the group $(\mathbb{Z},+)$.

Figure 1: The Cayley graph $\operatorname{Cay}_{\{1\}}(\mathbb{Z})$.

Figure 2: The Cayley graph $\operatorname{Cay}_{\{1,2\}}(\mathbb{Z})$. (Notice how the redundant generator added "extra" edges to the graph.)

Notice that $\operatorname{Cay}_{\{1\}}(\mathbb{Z})$ and $\operatorname{Cay}_{\{1,2\}}(\mathbb{Z})$ are not isomorphic as graphs. So, Cayley graphs are not unique.

3 Geodesic Metric Spaces

We want to associate a group G to a metric space. We do this by metrizing $X=\operatorname{Cay}_{S}(G)$. In particular, it is desirable to turn X into a geodesic metric space.

Definition. Let (X, d) be a metric space and let $L \in \mathbb{R}_{\geq 0}$. A path p between points x, y in X is geodesic if

1. there exists an isometric embedding from $[0, L] \rightarrow p$ and
2. if p is the shortest path between x and y.

Definition. A space (X, d) is geodesic if for any pair of points $x, y \in X$, there exists a geodesic path between x and y.

Metrizing $X=\operatorname{Cay}_{S}(G)$:

- Identify each edge in X with the unit interval $[0,1]$.
- Define the distance between two vertices x and y to be the length of the shortest edge path connecting x and $y .{ }^{3}$

We now have a way to associate a geodesic metric space to any (finitely generated) group G.

[^1]
4 Hyperbolic Groups

Definition. A triangle $x y z$ is geodesic if $\overline{x y}, \overline{y z}, \overline{x z}$ are geodesic paths.

Definition. Let $\delta \in \mathbb{R}_{\geq 0}$. A triangle $x y z$ is δ-slim if the δ nbhd of $\overline{x y}$ and the δ nbhd of $\overline{x z}$ cover all of $x y z$.

Definition. A geodesic metric space (X, d) is hyperbolic (or δ-hyperbolic) if there exists $\delta \in \mathbb{R}_{\geq 0}$ such that all geodesic triangles in X are δ-slim.

Figure 3: Geodesic triangles form tripods in trees.

Figure 4: Euclidean space is not δ-hyperbolic.
Definition. A group G is hyperbolic if its cayley graph $\mathrm{Cay}_{S}(G)$ is δ-hyperbolic.
(Note: Implicit in this definition is that G is necessarily finitely generated if it is hyperbolic.)

A PROBLEM WITH THIS DEFINITION:

- We already know that Cayley graphs are not unique!
- Given two distinct cayley graphs X and X^{\prime} of G, what if X is hyperbolic but X^{\prime} is not?

It turns out that this second point can't happen, so we have a well-defined definition. Let's see why...

5 Quasi-Isometric Embeddings

Definition. Let $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ be two metric spaces and let $f: M_{1} \rightarrow$ M_{2}. Then f is a quasi-isometric embedding if there exist $K, C \in \mathbb{R}^{+}$such that

$$
\frac{1}{K} d_{2}(f(x), f(y))-C \leq d_{1}(x, y) \leq K d_{2}(f(x), f(y))+C
$$

for all $x, y \in M_{1}$.

Quasi-isometric embeddings turn out to be a very important tool in geometric group theory. Essentially, we want to study properties that are invariant under QI embeddings.

Intuitively:

- Quasi-isometric embeddings are like isometric embeddings with some tolerance for "error" on a small enough scale, i.e., quasi-isometries respect large scale geometry.
- If $X \sim_{Q I} Y$, then if we zoom out far enough these two spaces should "look" the same.

Examples:

- Recall the two Cayley graphs given earlier in figures 1 and 2.
- Set $M_{1}=\operatorname{Cay}_{\{1\}}(\mathbb{Z})$ and $M_{2}=\operatorname{Cay}_{\{1,2\}}(\mathbb{Z})$.
- Then taking $f: M_{1} \rightarrow M_{2}$ to be an embedding with $K=1$ and $C=0$ is a quasi-isometric embedding.
- Or, define $g: M_{2} \rightarrow M_{1}$ by mapping black edges to black edges and a blue edge to its neighbouring black edges in the obvious way. Take $K=2$ and $C=0$. This is also a QI embedding.

Some other examples:

- All finite graphs (with path metric) are quasi-isometric.
- \mathbb{R} and \mathbb{Z} are quasi-isometric via the map $f: \mathbb{R} \rightarrow \mathbb{Z}$ defined by $f: x \mapsto$ $\lfloor x\rfloor$.
- \mathbb{Z} and \mathbb{Z}^{2} are not quasi-isometric (idea of proof: asymptotic argument... show that balls in \mathbb{Z}^{2} grow much faster than those in \mathbb{Z}, so there cannot exist values K, C that would allow you to set a bound on the corresponding distances).

Theorem. [2] Let X and X^{\prime} be two distinct cayley graphs for a group G. Then $X \sim_{Q I} X^{\prime}$.

Theorem. [2] If $X \sim_{Q I} X^{\prime}$, then X is hyperbolic if and only if X^{\prime} is hyperbolic.

The proofs for both of these theorems require very careful consideration of δ-slim triangles and QI embeddings. (Very LONG and cumbersome chains of inequalities!)

Now we have a sensible definition for what it means for a group to be hyperbolic. The next goal is to show that hyperbolic groups have Dehn presentation using a geometric argument.

6 Dehn Presentation

Definition. Let S be a finite alphabet and $n \in \mathbb{N}$. The group presentation

$$
\left\langle S \mid u_{1} v_{1}^{-1}=\cdots=u_{n} v_{n}^{-1}=1\right\rangle
$$

is a Dehn presentation if:

- For all $1 \leq i \leq n$, the length of the word v_{i} is shorter than the length of the word u_{i}, and
- Any freely reduced word non empty w over $S \cup S^{-1}$ such that $w={ }_{G} 1$ must contain a subword of the form u_{i} or u_{i}^{-1}.

Groups with Dehn presentation have solvable word problem.

Shortening algorithm:

- Choose a word $w \in G$.
- Freely reduce w.
- Check to see if w contains a subword of the form u_{i} or u_{i}^{-1}. (This can always be done because w is finite.) If no, then $w \not{ }_{G} 1$.
- If yes, replace the occurrence of u_{i} with v_{i}. Then $w=w^{\prime} v_{i} w^{\prime \prime}$. Repeat procedure on the word $w^{\prime} v_{i} w^{\prime \prime}$. This always terminates because replacing u_{i} with v_{i} reduces the length of the word.

Finally, given a hyperbolic group G we construct a Dehn presentation for G by following non-geodesic paths in $\mathrm{Cay}_{S}(G)$.

7 Taming Quasi-Geodesics

Think of a "non-geodesic" path as the image of some quasi-isometric embed$\operatorname{ding} \gamma:[0, L] \rightarrow X$. Such a path is commonly referred to as a quasi-geodesic.

We are interested in a special kind of quasi-geodesic path:
Definition. A path p in X is k-local geodesic if every subpath q of p with $|q| \leq k$ is geodesic.

Intuitively: k-local geodesic paths are almost geodesic (they are geodesic on a small enough scale).

The following proof offers one example of how the geometry of δ-slim triangles can be used to obtain a "nice" property of hyperbolic spaces.

Lemma 1. [3] Let X be δ-hyperbolic. Set $k>8 \delta$. Suppose p is a k-local geodesic path in X. Then there exists a geodesic path q sharing the same end points as p such that p is contained in a 2δ nbhd of q.

In other words, in hyperbolic spaces, k-local geodesics stay close to geodesics.

Proof. First, note that the path p can be described by the image of a quasiisometric embedding $\gamma:[0, L] \rightarrow X$.

Choose M to be a point on p having maximal distance from q. Then there exists some $t_{M} \in[0, L]$ such that $\gamma\left(t_{M}\right)=M$.

Either:

1. $d\left(0, t_{M}\right)<4 \delta$ or
2. $d\left(0, t_{M}\right)>4 \delta\left(\right.$ and $\left.d\left(t_{M}, L\right)>4 \delta\right)$.

Case 1: Suppose $d\left(0, t_{M}\right)<4 \delta$. Fix a point A on p such that

$$
d_{X}(M, A)>4 \delta,
$$

and $\left.p\right|_{I, A}$ is geodesic. ${ }^{4}$

Note: This is possible because p must have length greater than 8δ since it's a k-local geodesic.

Now, choose a point B on q with minimal distance from A.

[^2]

Consider the triangle $\triangle I A B$. This is a geodesic triangle. So, there exists a point x on either $\overline{I B}$ or $\overline{A B}$ such that

$$
d_{X}(M, x) \leq \delta
$$

(by the definition of δ-slim triangle).

Suppose $x \in \overline{A B}$, then

$$
\begin{aligned}
d_{X}(M, x)-d_{X}(A, x) & =d_{X}(M, A) & & \\
& >4 \delta & & \text { by previous assumption } \\
& \Longrightarrow d_{X}(A, x)>3 \delta & & (\star)
\end{aligned}
$$

Also,

$$
\begin{array}{rlr}
d_{X}(M, B)-d_{X}(A, B) & \leq\left(d_{X}(M, x)+d_{X}(x, B)\right)-\left(d_{X}(A, x)-d_{X}(x, B)\right) & \\
& =d_{X}(M, x)-d_{X}(A, x) & \\
& <\delta-3 \delta & \text { by }(\star) \\
& <0 &
\end{array}
$$

which contradicts the fact that M was chosen to have maximal distance from the path q. So, x must lie on $\overline{I A}$.

Now, for any other point $y \in p$,

$$
d_{X}(y, x) \leq d_{X}(M, x) \leq \delta
$$

Therefore, p is contained in a $\delta-$ nbhd of q.

The proof for case 2 is omitted. For complete proof, see [3]
Lemma 2. [2] Let X be a δ-hyperbolic space. Any closed loop γ in X contains a subarc p such that $|p| \leq 8 \delta$ and p is not geodesic.

Proof. By contradiction. Use lemma 1.

Theorem. [4] If G is hyperbolic, then G admits a Dehn presentation.
Proof. We can assume G has finite generating set S and $X=\operatorname{Cay}_{S}(G)$ is δ-hyperbolic.

Step 1: Define a procedure to construct a set of Dehn relators:

- Fix $k>8 \delta$, and define the set

$$
W_{k}=\left\{w \in S^{*} \mid w \text { is freely reduced and }|w| \leq k\right\} .
$$

- Let $p(w)$ denote the path in X associated to the word w.
- For each $w \in W_{k}$, decide if $p(w)$ is geodesic or not. (Note: W_{k} is a finite set so this procedure terminates.)
- If $p(w)$ is not geodesic, set $w=u_{i}$. There exists a word $w^{\prime} \in W_{k}$ such that $p\left(w^{\prime}\right)$ is geodesic and shares the same end points as $p(w)$. Set $w^{\prime}=v_{i}$.
- As a result, $u_{i}=v_{i}$, or equivalently, $u_{i} v_{i}^{-1}=1$.
- When the procedure terminates, we obtain a list of relators

$$
R=\left\{u_{1} v_{1}^{-1}, \ldots, u_{n} v_{n}^{-1}\right\} .
$$

Step 2: Verify the presentation $\langle S \mid R\rangle$ is a Dehn presentation and

 that $G \cong\langle S \mid R\rangle$.- If $w={ }_{G} 1$, then we want to show that $w \in \ll R \gg$.
- Induct on the length of w.
- Base case: $|w|=0$, i.e., w is the empty word.
- Inductive step: Suppose all words $w={ }_{G} 1$ of length at most L are contained in $\ll R$.
- Let $w={ }_{G} 1$ have length $L+1$. Since $w={ }_{G} 1, p(w)$ forms a cycle or a closed loop in X.
- By lemma $2, p(w)$ contains a non-geodesic subarc γ of length less than 8δ.
- By construction, the arc γ corresponds to a word u_{i}.
- So, $w=w^{\prime} u_{i} w^{\prime \prime}=w^{\prime} v_{i} w^{\prime \prime}$, but $\left|v_{i}\right|<\left|u_{i}\right|$, so $\left|w^{\prime} v_{i} w^{\prime \prime}\right|<L+1$. By inductive hypothesis, $w^{\prime} v_{i} w^{\prime \prime} \in \ll R \gg$.
- Now, $w^{\prime} u_{i} v_{i}^{-1} w^{\prime-1} \in \ll R \gg$ (by definition of normal closure). So,

$$
\begin{aligned}
w^{\prime} u_{i} v_{i}^{-1} w^{\prime-1} \cdot w^{\prime} v_{i} w^{\prime \prime} & =w^{\prime} u_{i} v_{i}^{-1} v_{i} w^{\prime \prime} \\
& =w^{\prime} u_{i} w^{\prime \prime} \in \ll R \gg .
\end{aligned}
$$

- Notice that, in the induction, we have also verified that if $w={ }_{G} 1$, then w contains a subword of the form u_{i}, so $\langle S \mid R\rangle$ is indeed a Dehn presentation for G.

8 Examples of Hyperbolic Groups

- Any finite group.
- Finitely generated free groups.
- Fundamental group of compact negatively-curved Riemannian manifold.
- Virtually cyclic groups, e.g., infinite dihedral group. ${ }^{5}$
- Virtually free groups, e.g., $F \rtimes H$, where F is free and H is finite, or $H * K$, where H and K are finite.

[^3]
References

[1] Alexander Yu. Olshanskii. Almost every group is hyperbolic, J. Algebra Comput., 2(1), pp. 1-17, 1992.
[2] C. Löh, Geometric group theory (Universitext). Springer, Cham, 2017, pp. xi+389, An introduction, isbn: 978-3-319-72253-5; 978-3-319-722542. doi: 10.1007/978-3-319-72254-2. [Online]. Available: https://doi-org.uml.idm.oclc.org/10.1007/978-3-319-72254-2
[3] G. Hyun, Hyperbolicity and the word problem. [Online]. Available: https://math.uchicago. edu/ may/REU2013/REUPapers/Hyun.pdf
[4] M. Clay and D. Margalit, Eds., Office hours with a geometric group theorist. Princeton University Press, Princeton, NJ, 2017, pp. xii+441, isbn: 978-0-691-15866-2.

[^0]: ${ }^{1}$ The underlying statistical model requires that the generating set $\left\{a_{1}, \ldots, a_{n}\right\}$ and the number of relators be fixed. Next, set an upper bound l on the word length of each relator. Finally, for each relator, choose a word at random (uniformly and independently) from the set of reduced words over $\left\{a_{1}, \ldots, a_{n}\right\}$ of length at most l. [1]
 ${ }^{2}$ Given a group $G=\langle S \mid R\rangle$ and an arbitrary word $w \in S^{*}$, is $w={ }_{G} 1$? The word problem is undecidable.

[^1]: ${ }^{3}$ This is commonly referred to as the path or word metric.

[^2]: ${ }^{4}$ Notation: $\left.p\right|_{I, A}$ denotes the subarc of p with end points $I=\gamma(0)$ and A.

[^3]: ${ }^{5}$ This is a result of the fact: If H is a finite index subgroup of G, then $G \sim_{Q I} H$.

