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1 Motivation

Why are hyperbolic groups interesting?

e From a probabilistic point of view, most! finitely generated groups are

hyperbolic.
e Hyperbolic groups have solvable word problem?.

e As aresult, “most” finitely generated groups have solvable word prob-

lem.

We use geometric techniques to prove the second point.

!The underlying statistical model requires that the generating set {ai,...,a,} and the
number of relators be fixed. Next, set an upper bound / on the word length of each relator.
Finally, for each relator, choose a word at random (uniformly and independently) from
the set of reduced words over {as,...,a,} of length at most .[1]

2Given a group G = (S| R) and an arbitrary word w € S*, is w =g 1? The word
problem is undecidable.



2 Cayley Graphs

Intuitively: A Cayley graph is a graph that models the multiplication of a
group G.

e Vertices are labelled by elements of G.

e Edges are labelled by elements of the generating set S of G.

Example. Here are two distinct Cayley graphs for the group (Z, +).

Figure 1: The Cayley graph Cayy,(Z).
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Figure 2: The Cayley graph Cay 5y(Z). (Notice how the redundant gener-
ator added “extra” edges to the graph.)

Notice that Cayy(Z) and Cayyy 5)(Z) are not isomorphic as graphs. So,

Cayley graphs are not unique.



3 Geodesic Metric Spaces

We want to associate a group G to a metric space. We do this by metrizing
X = Cayg(G). In particular, it is desirable to turn X into a geodesic metric

space.

Definition. Let (X, d) be a metric space and let L € R>q. A path p between

points z,y in X is geodesic if
1. there exists an isometric embedding from [0, L] — p and

2. if p is the shortest path between x and y.

Definition. A space (X, d) is geodesic if for any pair of points x,y € X, there

exists a geodesic path between x and y.

Metrizing X = Cayg¢(G):
e Identify each edge in X with the unit interval [0, 1].

e Define the distance between two vertices x and y to be the length

of the shortest edge path connecting = and 3.2

We now have a way to associate a geodesic metric space to any (finitely

generated) group G.

3This is commonly referred to as the path or word metric.



4 Hyperbolic Groups

Definition. A triangle xyz is geodesic if Ty, yz, Tz are geodesic paths.

Definition. Let § € R>(. A triangle xyz is d—slim if the 6 nbhd of 7y and
the ¢ nbhd of Tz cover all of zyz.

Definition. A geodesic metric space (X, d) is hyperbolic (or d—hyperbolic) if

there exists 0 € Rs( such that all geodesic triangles in X are J—slim.

Figure 3: Geodesic triangles form tripods in trees.
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Figure 4: Euclidean space is not d—hyperbolic.

Definition. A group G is hyperbolic if its cayley graph Cay¢(G) is §—hyperbolic.

(Note: Implicit in this definition is that G is necessarily finitely generated if
it is hyperbolic.)

A PROBLEM WITH THIS DEFINITTION:
e We already know that Cayley graphs are not unique!

e Given two distinct cayley graphs X and X’ of GG, what if X is
hyperbolic but X’ is not?

It turns out that this second point can’t happen, so we have a well-defined

definition. Let’s see why...



5 Quasi-Isometric Embeddings

Definition. Let (M, d;) and (Ms, ds) be two metric spaces and let f: M; —
Ms,. Then f is a quasi-isometric embedding if there exist K,C' € RT such
that

Lb(f(2), f(9) ~ C < di(a,) < Ko(f(x), f(9)) +C

for all z,y € M.

Quasi-isometric embeddings turn out to be a very important tool in geometric
group theory. Essentially, we want to study properties that are invariant

under QI embeddings.

Intuitively:

e Quasi-isometric embeddings are like isometric embeddings with some
tolerance for “error” on a small enough scale, i.e., quasi-isometries

respect large scale geometry.

o If X ~or Y, then if we zoom out far enough these two spaces should

“look” the same.

Examples:
e Recall the two Cayley graphs given earlier in figures 1 and 2.
e Set M, = Cayy(Z) and My = Cayy ,(Z).

e Then taking f : My — M, to be an embedding with K =1 and C' =0

is a quasi-isometric embedding.

e Or, define g : My — M; by mapping black edges to black edges and
a blue edge to its neighbouring black edges in the obvious way. Take
K =2 and C' =0. This is also a QI embedding.



Some other examples:
e All finite graphs (with path metric) are quasi-isometric.

e R and Z are quasi-isometric via the map f : R — Z defined by f : x —
[z].

e 7 and Z? are not quasi-isometric (idea of proof: asymptotic argument...
show that balls in Z? grow much faster than those in Z, so there cannot
exist values K, (' that would allow you to set a bound on the corre-

sponding distances).

Theorem. [2] Let X and X’ be two distinct cayley graphs for a group G.
Then X ~¢g; X'.

Theorem. [2] If X ~g; X', then X is hyperbolic if and only if X’ is
hyperbolic.

The proofs for both of these theorems require very careful consideration of
d—slim triangles and QI embeddings. (Very LONG and cumbersome chains

of inequalities!)

Now we have a sensible definition for what it means for a group to be hyper-
bolic. The next goal is to show that hyperbolic groups have Dehn presenta-

tion using a geometric argument.



6 Dehn Presentation

Definition. Let S be a finite alphabet and n € N. The group presentation

(Sluvyt = =u,v, ' =1)

is a Dehn presentation if:

e For all 1 < i < n, the length of the word v; is shorter than the length

of the word wu;, and

e Any freely reduced word non empty w over S U S~! such that w =¢ 1

must contain a subword of the form wu; or u; *.

Groups with Dehn presentation have solvable word problem.

Shortening algorithm:
e Choose a word w € G.
e Ereely reduce w.

e Check to see if w contains a subword of the form u; or u;'. (This can

always be done because w is finite.) If no, then w #4 1.

e If yes, replace the occurrence of u; with v;. Then w = w'v;w”. Re-

i

peat procedure on the word w'v;w”. This always terminates because

replacing u; with v; reduces the length of the word.

Finally, given a hyperbolic group G we construct a Dehn presentation for GG

by following non-geodesic paths in Cay¢(G).



7 Taming Quasi-Geodesics

Think of a “non-geodesic” path as the image of some quasi-isometric embed-

ding v : [0, L] — X. Such a path is commonly referred to as a quasi-geodesic.
We are interested in a special kind of quasi-geodesic path:

Definition. A path p in X is k—local geodesic if every subpath ¢ of p with
lg| < k is geodesic.

Intuitively: k—local geodesic paths are almost geodesic (they are geodesic on

a small enough scale).

The following proof offers one example of how the geometry of d—slim trian-

gles can be used to obtain a “nice” property of hyperbolic spaces.

Lemma 1. [3] Let X be d—hyperbolic. Set k > 8J. Suppose p is a k—local
geodesic path in X. Then there exists a geodesic path ¢ sharing the same
end points as p such that p is contained in a 20 nbhd of q.

In other words, in hyperbolic spaces, k—local geodesics stay close to geodesics.

Proof. First, note that the path p can be described by the image of a quasi-
isometric embedding v : [0, L] — X.

1= 500) q F= ()



Choose M to be a point on p having maximal distance from ¢. Then there
exists some ty; € [0, L] such that v(tp) = M.

Either:
1. d(0,tp) < 46 or
2. d(0,ty) > 46 (and d(tp, L) > 40).
Case 1: Suppose d(0,ty7) < 49. Fix a point A on p such that

dx(M, A) > 45,

and p|; 4 is geodesic.t

1=500) q9 F=%(1)

Note: This is possible because p must have length greater than 8§ since it’s

a k—local geodesic.

Now, choose a point B on ¢ with minimal distance from A.

“Notation: p|; 4 denotes the subarc of p with end points I = ~(0) and A.
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1=500) 9 B F=3%1)
Consider the triangle ATAB. This is a geodesic triangle. So, there exists a
point x on either 1B or AB such that
dX<M) ZL') S J

(by the definition of j—slim triangle).
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1=500) 9 B8 F=3%1)
Suppose x € AB, then
dX(Max) - dX(Avx) - dX(MaA)
> 46 by previous assumption

= dx(A,x) >36 (%)

11



Also,

dx(M,B) — dx(A, B) < (dx(M,z) + dx(z, B)) — (dx (A, z) — dx(z, B))
= dx(M, [L’) — dx(A, ZL’)
<d—30 by (%)

< 0,

which contradicts the fact that M was chosen to have maximal distance from

the path ¢. So,  must lie on IA.

Now, for any other point y € p,
dx(y,z) < dx(M,z) < 0.

Therefore, p is contained in a §—nbhd of q.

The proof for case 2 is omitted. For complete proof, see [3] O

Lemma 2. [2] Let X be a d—hyperbolic space. Any closed loop 7 in X

contains a subarc p such that |p| < 85 and p is not geodesic.
Proof. By contradiction. Use lemma 1.

Theorem. [4] If G is hyperbolic, then G’ admits a Dehn presentation.

Proof. We can assume G has finite generating set S and X = Cayq(G) is
d—hyperbolic.

Step 1: Define a procedure to construct a set of Dehn relators:
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Fix k > 8, and define the set

Wi ={w € S*|w is freely reduced and |w| < k}.

Let p(w) denote the path in X associated to the word w.

For each w € Wy, decide if p(w) is geodesic or not. (Note: Wy is a

finite set so this procedure terminates.)

If p(w) is not geodesic, set w = u;. There exists a word w’ € Wy, such
that p(w’) is geodesic and shares the same end points as p(w). Set

w' = ;.
. —1
As a result, u; = v;, or equivalently, u;v; - = 1.

When the procedure terminates, we obtain a list of relators

R={uv;’, ... u.v, '}

Step 2: Verify the presentation (S| R) is a Dehn presentation and
that G = (S| R).

If w =g 1, then we want to show that w € < R >.
Induct on the length of w.
Base case: |w| =0, i.e., w is the empty word.

Inductive step: Suppose all words w =g 1 of length at most L are
contained in < R >.

Let w =¢ 1 have length L + 1. Since w =¢ 1, p(w) forms a cycle or a

closed loop in X.

By lemma 2, p(w) contains a non-geodesic subarc «y of length less than
80.
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e By construction, the arc v corresponds to a word wu;.

e So, w = wuw" = wy;w”, but |v;| < |u,l, so |[w'v;w”| < L+ 1. By
inductive hypothesis, w'v;u” € < R >>.

e Now, w'uv; 'w' ™" € < R>> (by definition of normal closure). So,

1 Z

/ — /— / " / —
WU v; Lw CWVW = WU, Losw

=wuw’ € K R> .

e Notice that, in the induction, we have also verified that if w =4 1,
then w contains a subword of the form u;, so (S| R) is indeed a Dehn

presentation for G.

Examples of Hyperbolic Groups
e Any finite group.
e Finitely generated free groups.

e Fundamental group of compact negatively-curved Riemannian mani-

fold.
e Virtually cyclic groups, e.g., infinite dihedral group.®

e Virtually free groups, e.g., F x H, where F' is free and H is finite, or
H % K, where H and K are finite.

°This is a result of the fact: If H is a finite index subgroup of G, then G ~¢q; H.
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