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Topic 6 Learning Objectives

1 identify the regions of increase/decrease of a function

2 prove that if f ′(x) > 0 for all x in an interval (a, b), then f is
increasing on (a, b).

3 prove that if f ′(x) < 0 for all x in an interval (a, b), then f is
decreasing on (a, b).

4 find local max and min values using the first derivative test

5 calculate higher order derivatives

6 identify the regions of concave up/concave down of a function

7 find inflection points

8 find local max and min values using the second derivative test

9 sketch curves using information from f (x), f ′(x), and f ′′(x)
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What Does the First Derivative Tell Us About the Shape
of a Graph?

We already know that the first derivative can tell us about where a
function is constant, but it can also tell us where a function is increasing
or decreasing:
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What Does the First Derivative Tell Us About the Shape
of a Graph?

If f ′(x) > 0 for all x in an interval (a, b), then f is increasing on
(a, b).

If f ′(x) < 0 for all x in an interval (a, b), then f is decreasing on
(a, b).
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Examples

Where are the following functions increasing and decreasing?

1 f (x) = 2x3

2 f (x) = 3x4 − 4x3 − 12x2 + 5

3 g(x) = x + 2ex
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Local Extrema

What happens when a function changes from increasing to decreasing or
vice-versa?

A function f (x) has a local (relative) max at c if f (c) ≥ f (x) when x is
near c . Similarly, f (x) has a local (relative) min at c if f (c) ≤ f (x)
when x is near c
Example: Identify the local extrema in the graphs below:
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Local Extrema

How do we find local max’s and min’s??
Fermat’s Theorem: If f (x) has a local max or min at x = c , and if f (c)
exists, then f ′(c) = 0. BUT, we can not expect to locate extreme values
simply by setting f ′(x) = 0 and solving.
Why is that??

So Fermat’s Theorem suggests that we should at least start looking for
extreme values of f at the numbers x = c where f ′(c) = 0 or f ′(c)dne!
We call these numbers (c ’s) the critical numbers or critical points (cp’s)
of the function.
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Examples

Find the critical numbers of the following functions:

1 f (x) = x3 + +x2 + x

2 f (x) = x
3
5 (4− x)
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The First Derivative Test

If f ′(x) changes from + to - at c , then c is a local max (as long as it
is in the domain).

If f ′(x) changes from - to + at c , then c is a local min (as long as it
is in the domain).

If f ′(x) does not change sign at c , then there is no local max or min
at c.

Use this test to identify the local max’s and min’s in the last example.
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Higher Order Derivatives

If f(x) is a differentiable function, then its derivative is also a function, and
so may have derivatives of its own!

For example, we know that the derivative of a function can tell us about
whether that function is increasing or decreasing. If we are interested in a
product whose profit function is P(x), and if we know that P ′(x) > 0, then
we know that profit is always increasing. Howver, whether or not this is a
good investment depends also on the rate of increase. This rate is P ′′(x).

Example: Given the profit functions below (t is in years), which of the
following products should I invest in for a long term investment? short
term investment?

P1(x) = x3, P2(x) = x3 − 6x2 + 12x
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Examples

Other notations:

1 For f (x) = x5 + 34 + 9x3 − x2 − x + 7, find f ′′′(x) and f (10)(x).

2 Find d27

dx27
(xex)
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Higher Order Derivatives

In general, we can interpret the second derivative as a rate of change of a
rate of change. If the first derivative is velocity, then its derivate (the
second derivative) represents acceleration.

Example: The position of a particle is given by the equation of motion
s = f (t) = t3 − 6t2 + 9t (where t is in seconds and s is in meters). Find
the accelearation at time t. What is the acceleration after 4 seconds?
Graph all three functions together and discuss the particles speed.
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What Does the Second Derivative Tell Us About the
Shape of a Graph?

Look at the following functions:
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What Does the Second Derivative Tell Us About the
Shape of a Graph?

If f ′′(x) > 0 for all x in an interval (a, b), then f is concave up on
(a, b).

If f ′′(x) < 0 for all x in an interval (a, b), then f is concave down on
(a, b).

The places where f changes from one concavity to the other are called
inflection points.
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Example

Sketch a possible graph of a function that would satisfy the following:

1 f ′(x) > 0 on (−∞, 1) and f ′(x) < 0 on (1,∞),

2 f ′′(x) > 0 on (−∞, 2) and (2,∞), and f ′′(x) < 0 on (−2, 2),

3 lim
x→−∞

f (x) = −2 and lim
x→∞

f (x) = 0
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The Second Derivative Test

The second derivative can also help us to distinguish between local max’s
and min’s:

If f ′(c) = 0 and f ′′(c) > 0, then f has a local at c .

If f ′(c) = 0 and f ′′(c) > 0, then f has a local at c .

If f ′(c) = 0 and f ′′(c) = 0, then the test is inconclusive.
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Example

Discuss the curve y = x4 − 4x3 with respect to regions of
increase/decrease, local maxima and minima, concavity, points of
inflection. Use this info to conjecture a graph for the function.
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The Guidelines For Curve Sketching

To accurately sketch the graph of a function f (x), follow the steps:
1 Domain: check where f (x) is undefined.
2 Intercepts: x-intercept → set y = 0, and y -intercept → set x = 0.
3 Symmetry: check if f (−x) = f (x) (even)f (−x) = −f (x) (odd).
4 Asymptotes: HA → check lim

x→±∞
f (x) for y = HA. VA → check

lim
x→a

f (x) at all places a where f (x) is undefined for x = VA.

5 Inc/Dec: compute f ′(x) and find the intervals where f ′(x) > 0 (inc)
and f ′(x) < 0 (dec), and critical numbers where f ′(x) = 0 or f ′(x)
dne.

6 Local Max/Mins: check your critical numbers to see if they are local
maxs or mins.

7 Concavity: compute f ′′(x) and find possible inflection points, then
find the intervals where f ′′(x) > 0 (CU) and f ′′(x) < 0 (CD), and
confirm inflection points.

8 Sketch: put the info from the steps together to make a sketch,
labeling important points first!
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Examples

Check out this link for a video on curve sketching!
https://www.educreations.com/lesson/embed/9874572/?ref=app
Sketch the following functions using the guidelines:

f (x) = 2x2

x2−1

f (x) = x2

x+1

f (x) = x2√
x+1

f (x) = ex

x
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Curve Sketching
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Five in Five!

1 Identify where the function x3 + x2 − x is increasing or decreasing,
and concave up or concave down.

Match the functions below to their graphs:

1 f (x) = (x2 − 1)2

2 f (x) = x
x2−4

3 f (x) = −x
2x2+1

4 f (x) = 3
ex−1
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Flex the Mental Muscle!

Use the steps for curve sketching to sketch the curve

y =
(x + 9)

ln x
,

identifying the domain, any x- and y -intercepts, intervals of
increase/decrease, local max/mins, intervals of concave up, concave down,
and inflections points.

D. Kalajdzievska (University of Manitoba) Math 1520 Fall 2015 22 / 22


	Curve Sketching
	How Derivatives Affect the Shape of a Graph
	Higher Order Derivatives
	The Guidelines for Curve Sketching


