Midterm Formulas

Lines:

$$\frac{}{\text{1.Slope}} = m = \frac{y_2 - y_1}{x_2 - x_1}$$

2. Slope – Intercept Form: y = mx + b

3. Point – Slope Form: $y - y_1 = m(x - x_1)$

Cost:

1. Cost = C(x) = (marginal)x + fixed = mx + b

2. Revenue = R(x) = (price)(#units) = px

3. Profit = P(x) = revenue – cost = R(x) – C(x)

note: "marginal" cost, revenue, or profit represents the derivative of these functions

Properties of Functions:

1. Domain: the set of all possible values of the independent variable (x).

2. Range: the resulting set of all possible values of the dependent variable (y).

3. Vertical line test: if a vertical line drawn at any point of a graph crosses the function more than once, it is not a function.

Exponential Functions:

1.
$$a^0 = 1$$
, $a^{-n} = \frac{1}{a^n}$

$$2.(a^m)(a^n) = a^{m+n}$$

$$3.\frac{a^m}{a^n} = a^{m-n}$$

$$4.(a^m)^n = a^{mn}$$

$$5.(ab)^m = (a^m)(b^m)$$

$$6.\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

7. if $a > 0 \& a \neq 1 \Rightarrow a^m = a^n$ then m = n

8. Change of Base (Exp's): $a^x = e^{(\ln a)x}$

Interest: (principle=P, yearly rate =r, compounded m times/year, # years=t)

1. Simple Interest: I = Prt

2. Compound Interest:
$$A = P\left(1 + \frac{r}{m}\right)^{tm}$$

3. Continuous Compounding: $A = Pe^{rt}$

4. Effective rate:
$$r_E = \left(1 + \frac{r}{m}\right)^m - 1$$
 (compound interest)

$$r_E = e^r - 1$$
 (continuous compounding)

Logarithmic Functions:

$$1. f(x) = \log_a x \quad for \ x > 0$$

$$2. y = \log_a x \Leftrightarrow a^y = x$$

$$3.\log_{10} x = \log x$$

$$4.\log_e x = \ln x$$

i)
$$ln e = 1$$

ii)
$$ln 1 = 0$$

$$5.\log_a(xy) = \log_a x + \log_a y$$

$$6.\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$$

$$7.\log_a(x^r) = r\log_a x$$

$$8.\log_a a = 1 \Rightarrow \log_a(a^r) = r\log_a a = r$$

$$9.\log_a 1 = 0$$

10. Change of Base (Logs):
$$\log_a x = \frac{\log_b x}{\log_b a} = \frac{\ln x}{\ln a}$$

Growth & Decay:

1. For initial amount y_0 at time t = 0, the amount present at some later time t is given by $y = y_0 e^{kt}$

$$k > 0 \Rightarrow growth$$

$$k < 0 \Longrightarrow decay$$

2. Half - Life
$$T = \frac{-\ln 2}{k}$$

Limits:

1. If p(x) is a polynomial, then $\lim p(x) = p(a)$

2. If
$$\lim_{x\to a^{-1}} f(x) = L$$
 and $\lim_{x\to a^{+1}} f(x) = M$ and $L \neq M$, then $\lim_{x\to a} f(x)$ does not exist

3. If $f(x) = \frac{p(x)}{q(x)}$ with p and q polynomials, then to take $\lim_{x \to \infty} f(x)$ divide p & q by the highest power of x in q (the denominator)

Continuity:

A fcn' f(x) is continuous at a point x = c if:

- 1. f(c) is defined
- $2.\lim_{x\to\infty} f(x)$ exists
- $3.\lim_{x\to c} f(x) = f(c)$

The Derivative:

1. The derivative represents the slope of the tangent line to a curve f(x)

- 2. Definition of the Deriative: $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$
- 3. The derivative does not exists at the places on a graph where there are sharp points, where the function is discontinuos, or where the tangent line is vertical.

Techniques for Derivatives:

- 1. Constant Rule: $f(k) = k \Rightarrow f'(x) = 0$
- 2. Power Rule: $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$
- 3. Product Rule: $f(x) = u(x)v(x) \Rightarrow f'(x) = u'(x)v(x) + v'(x)u(x)$
- 4. Quotient Rule: $f(x) = \frac{u(x)}{v(x)} \Rightarrow f'(x) = \frac{u'(x)v(x) v'(x)u(x)}{[v(x)]^2}$
- 5. Chain Rule: $y = f[g(x)] \Rightarrow y' = f'[g(x)] \cdot g'(x)$ (derivative of the outside times derivative of the inside)