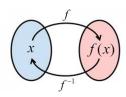
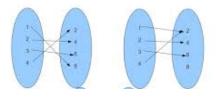
Topic 6 Outline

- Inverses and Logarithms
 - What is an Inverse Function?
 - Logarithmic Functions
 - Logarithm Laws
 - The Natural Logarithm
 - Derivatives of Logarithmic and Exponential Functions
 - Logarithmic Differentiation


Topic 6 Learning Objectives

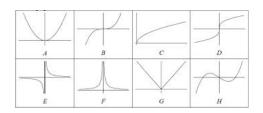
- define an inverse function
- 2 understand the term "one-to-one" and the horizontal line test
- understand and use the relationship between exponentials and logarithms
- define and graph the logarithm function
- recall basic facts about the logarithmic function
- recall and use the logarithm laws (ie, to solve equations)
- define and graph the natural logarithm
- recall basic facts about the natural logarithm
- odifferentiate logarithmic and exponential functions using the rules
- recognize when logarithmic differentiation is useful or necessary
- use logarithmic differentiation to differentiate functions


Lets say that we observe a population of bacteria. The size of the bacterua is recorded hourly, so that the number of bacteria N can be thought of as a function of time t: N = f(t).

Say instead that we want to study the tume required for the population to reach various levels. We are now thinking of t as a function of N: t = g(N).

This is the **inverse** function of f, denoted $f^{-1}(N)$.

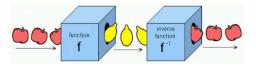
Not all functions have inverses:



 \boldsymbol{f} is called $\boldsymbol{one\text{-to-one}}$ because it never takes on the same output twice.

To distinguish whether something was a function or not, we used the vertical line test. To test if a function is one-to-one (and thus has an inverse), we can use the **horizontal line test**!

Why do you think this works?? What does it tell you about the relationship between x- and y-coordinates of a function and its inverse? Example: Are the following functions 1-1?

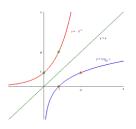

$$f(x) = x^2$$
?

$$f(x) = x^3$$
?

$$f(x) = a^x \text{ for values of } a > 0?$$

So the domain of f(x) is the range of $f^{-1}(x)$, and vice versa!

Cancellation Equations: $f^{-1}(f(x)) = x$ and $f(f^{-1}(x)) = x$


Examples

• Find the inverse of the function $f(x) = x^3 + 2$

2 Sketch the function $f(x) = \sqrt{-1-x}$ and its inverse.

Logarithmic Functions

If a > 0 and $a \ne 1$, then the function a^x is 1-1 and has an inverse called the **logarithmic function with base a**, $log_a(x)$.

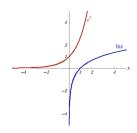
Domain:

Range:

We can transform back and forth between logarithmic and exponential functions by using the relationship:

$$log_a x = y \Leftrightarrow a^y = x$$

Logarithmic Functions


By the cancellation equations:

Log Laws:

$$\log_a(\frac{x}{y}) = \log_a x - \log_a y$$

The Natural Logarithm

Of all possible bases for log, the base e is the most frequently used. We call this the **natural logarithm**, $log_e x = lnx$.

Facts to remember:

Examples

- **1** Evaluate $log_2(80) log_2(5) = x$
- ② Solve for x in log x = 5
- **3** Solve for *x* in $e^{5-3x} = 10$
- Solve for x in 2ln(4x) = 1
- **Solution** Express $ln(1+x^2) + \frac{1}{2}lnx ln(sinx)$ as a single logarithm
- Find the domain of f(x) = log(3 x)
- Find the domain of $f(x) = \sqrt{3 e^{2x}}$
- **9** Find the domain of f(x) = In(2 + Inx)

Derivatives of Logs and Exponentials

Check out this link for a video on the log functions and their derivatives! https://www.educreations.com/lesson/embed/9773346/?ref=app

Examples

Find
$$f'(x)$$
 if $f(x) =$

In(sinx)

 $2 10^{x^2} + 3^x$

3 $log_{10}(\frac{x}{x-1})$

 \sqrt{lnx}

 $oldsymbol{1}$ In |x|

Logarithmic Differentiation

Sometimes, the calculation of derivaties of complex functions can be made easier by taking logarithms! Steps:

- **1** Take natural logs (or any other base would also do) of both sides of an equation that is in the form y = f(x) and use the log laws to simplify it.
- ② Use implicit differentiation with respect to x to differentiate.
- **3** Solve for y', and this is the derivative we were looking for!

Example: Differentiate
$$y = \frac{x^{\frac{3}{4}}\sqrt{x^2+1}}{(3x+2)^5}$$

Logarithmic Differentiation

In other cases, Logarithmic differentiation is necessary because none of the other rules will do!

This happens in cases where our function has the form $y = f(x)^{g(x)}$. Example: Differentiate $y = x^{sinx}$

Five in Five!

- **①** What is the domain of the function $ln(\frac{x}{x-1})$?
- **②** Sketch a graph of the function log_2x .
- **3** Differentiate $y = ln(e^x x^3)$.
- Differentiate $y = 3^x + x^3 + log_3x$.
- **5** Differentiate $y = x^x$

Flex the Mental Muscle!

① Differentiate $y = x^{\cos 3x} + 7^{x^2}$, x > 0.

Oifferentiate

$$y = \frac{\sqrt[3]{x - tanx}(1 + 2x^3)^5}{\sqrt{1 + x^2}}$$

once without logarithmic differentiation, and once with. Simplify your final answers until they match.