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Topic 10 Learning Objectives

1 calculate antiderivatives (indefinite integrals)

2 solve basic differential equations

3 solve problems involving rectilinear motion

4 understand the area problem

5 understand and define the Reimann Sum

6 calculate basic Riemann Sums

7 understand the relationship between area and the definite integral

8 solve integrals by interpreting them as areas

9 use the Fundamental Theorem of Calculus Part 1 to calculate
integrals functions

10 use the Fundamental Theorem of Calculus Part 2 to solve definite
integrals

11 find areas by using definite integrals
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Antiderivatives

Say we know the velocity of a particle, but want to know its position at a
given time. Or, we know the rate at which bacteria is growing, but want
to know the size of the popluation at a given time. In other words, given
the derivative can we work backwards to find the original?

A function F is called an antiderivative of f on an interval I if
f (x) = F ′(x) on I (ie, f (x) is the derivative and F (x) is the original
function). The symbol that we use is called the indefinite integral:

∫

Check out this link for a video on antiderivatives!
https://www.educreations.com/lesson/embed/9881168/?ref=app
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Antiderivatives

Let’s examine the function f (x) = x2 and see if we can come up with a
conjecture for its antiderivative:
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Antiderivatives

So if F and G are any 2 antiderivatives of f (x), then
F ′(x) = f (x) = G ′(x) (so F (x)− G (x) = C , they differ only by a
constant).

Theroem: If F is an antiderivative of f on an interval I , then the most
general antiderivative of f on I is F (x) + C .
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Antiderivatives

By assigning specific values to C , we obtain a family of functions whose
graphs are vertical translates of one another.

Example: Sketch some members of the family of antiderivatives of
f (x) = x2:
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Examples

State the most general antiderivatives of the following:
1 f (x) = sin x

2 f (x) = 1
x

3 f (x) = xn

4 f (x) = 4

As in this example, every differentiation formula, when read from right to
left, gives an antidifferentiation formula!
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Antiderivative Formulas

Function Antiderivative

xn (n 6= −1) xn+1

n+1
1
x ln |x |
eax 1

ae
ax

sin ax −1
a cos ax

cos x 1
a sin x

sec2 x tan x

sec x tan x sec x

Antiderivative Rules:
kf (x) has antiderivative kF (x).

f (x)± g(x) has antiderivative F (x)± G (x)
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Examples

Integrate:

1
∫

(3x2 + sec2 x + 3)dx

2
∫

(2e2t + 2e2)dt

3
∫

(
√
x − x−1)dx

4
∫

3
cos2 t

dt

5
∫

6−x
3√x dx

6
∫
x2(x + 2)dx

7 If f ′(x) =
∫

(8 + 6x2)dx , find f (0).
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Differential Equations

In applications of calculus, it is very common to have a situation where it
is required to find a function given knowledge about its derivative or
higher-order derivatives. An equation that involves the derivatives of a
function is called a differential equation.

Example: Find f (x) if f ′(x) = ex − x + 20, and f (0) = 0

In some cases, there may be some extra conditions given that will
determine the constants, and therefore uniquely specify the solution!
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Example

Find f (x) if f ′′(x) = 12x2 + 6x − 4, and

1 f (0) = 4, f (1) = 1

2 f ′(0) = 1, f (0) = −3

What do you notice from this example, in terms of solving from higher
derivatives??
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Rectilinear Motion

Recall that if an object has potion function s = f (t), velocity is is
v(t) = s ′(t). So position is the antiderivative of velocity.
Likewise, acceleration a(t) = v ′(t) = s ′′(t), so velocity is the antiderivative
of accelerationMeaning that now we can move foreward or back from any
of the three motion functions to find the other two!
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Example

A particle moves in a straight line and has acceleration given by
a(t) = 6t + 4. Its initial velocity is -6cm/s and initial displacement is 9cm.
Find its position function s(t).
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The Area Problem

In this section we discover that in trying to find the area under a curve, we
end up with a special type of limit.

What is the Area Problem??

We want to find the area of the region S that lies under the curve
y = f (x) [f (x) ≥ 0] from x = a to x = b:

It is easy to find the area of a region with straight sides, but what can we
do to estimate and eventually find the area exactly of a region with curved
sides??
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Example

Estimate the area under the parabola y = x2 (using rectangles), from
x = 0 to x = 1.

How can we get a better estimate??

D. Kalajdzievska (University of Manitoba) Math 1500 Fall 2015 15 / 33



The Area Problem

Use more rectangles!!

If we used 1000 rectangles, R1000 = 0.3338 and L1000 = 0.3328. It seems
like area A ≈ 0.333... = 1

3 .

How many rectangles do you think we would need to take for the area to
be exact??

Try it!
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The Area Problem

Therefore we can define area to be:

lim
n→∞

Rn = lim
n→∞

Ln

We can make our definition even more genral by not specifying where in
the interval we choose to draw the rectangle from (random), and by
letting the area be bounded by a general function y = f (x) and the lines
x = a and x = b.
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The Area Problem

Now, we approximate the area of the i th strip Si with a rectangle with
width ∆x and height f (x∗i ), where f (x∗i ) is the value of f at any number
in the i th subinterval [xi−1, xi ]. We call these numbers, x∗1 , x

∗
2 , ....., x

∗
n

sample points. So:
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The Definite Integral

Definition: If f is a continuous function defined for a ≤ x ≤ b, we divide
the interval [a, b] into n subintervals of equal width ∆x = b−a

n . Let x0 = a
and xn − b be the endpoints of these subintervals, and let x∗1 , x

∗
2 , ....., x

∗
n

be any sample points in these subintervals, so x∗i lies in the i th subinterval
[xi−1, xi ]. Then the definite integral of f from x = a to x = b is:

b∫
a

f (x)dx = lim
n→∞

n∑
i=1

f (x∗i )∆x = A
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The Definite Integral

So far, we have restricted ourselves to the case where f (x) ≥ 0. We can
also defnite the integral is this is not so:

Example: Evaluate the following by interpreting each as an area:

1

3∫
0

(x − 1)dx

2

1∫
0

√
1− x2dx

3

π
2∫
−π

2

sin xdx
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Properties of The Definite Integral

1

b∫
a
f (x)dx = −

a∫
b

f (x)dx

2

a∫
a
f (x)dx = 0

3

b∫
a

[f (x)± g(x)]dx =
b∫
a
f (x)±

b∫
a
g(x)

4

b∫
a
cdx = c(b − a) (where c is a constant)

5

b∫
a
cf (x)dx = c

b∫
a
f (x)dx

6

b∫
a
f (x)dx =

c∫
a
f (x)dx +

b∫
c
f (x)dx , (a ≤ c ≤ b)
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Properties of The Definite Integral

1 If f (x) ≥ 0 on (a ≤ x ≤ b), then
b∫
a
f (x)dx ≥ 0

2 If f (x) ≤ 0 on (a ≤ x ≤ b), then
b∫
a
f (x)dx ≤ 0

3 If f (x) ≥ g(x) on (a ≤ x ≤ b), then
b∫
a
f (x)dx ≥

b∫
a
g(x)dx

4 If m ≤ f (x) ≤ M on (a ≤ x ≤ b) (with m and M beign constants),

then m(b − a) ≤
b∫
a
f (x)dx ≤ M(b − a)
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Examples

1 Evaluate
1∫
0

(4 + 3x2)dx .

2 If we know that
10∫
0

f (x)dx = 17 and
8∫
0

f (x)dx = 12, what is

10∫
8

f (x)dx?

3 Estimate
1∫
0

e−x
2
dx .

D. Kalajdzievska (University of Manitoba) Math 1500 Fall 2015 23 / 33



The Fundamental Theorem of Calculus Part 1

We start by looking at a function defined by

g(x) =

x∫
a

f (t)dt,

where f is a continuous function in [a, b] and x varies between a and b.

Thus g depends ONLY on x . If x is fixed, then g(x) =
x∫
a
f (t)dt is a

number, but if x varies, then g(x) =
x∫
a
f (t)dt also varies and defines a

function of x , g(x)!

We call this an integral function.

Check out this link for a video on the FTC Parts 1 and 2!
https://www.educreations.com/lesson/embed/9881561/?ref=app
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Example

If f is the function whose graph is shown below, and g(x) =
x∫
0

f (t)dt,

sketch a rough graph of g(x) on [0, 5] by varying x .
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The Fundamental Theorem of Calculus Part 1

If f is a continuous function in [a, b] then the function defined by

g(x) =
x∫
a
f (t)dt, a ≤ x ≤ b is continuous on [a, b] and differentiable on

(a, b), and g ′(x) = f (x).

If these conditions do not hold, we must modify the integral ourselves by
using the properties of definite integral, or a special version of the chain
rule (that we will see in the next examples).
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Examples

Find the derivatives of the following:

1

x∫
0

(4 + 3t2)dt.

2

x∫
5

√
t + t3dt

3

17∫
x

et
2

t+1dt

4

x4∫
1

sec tdt
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The Fundamental Theorem of Calculus Part 2

If f is a continuous function in [a, b]
b∫
a
f (x)dx = F (b)− F (a), where F is

any antiderivative of f .

Evaluate the following integrals:

1

3∫
0

(ex + 1)dx .

2

8∫
−2

3
√
xdx

3

4∫
0

(1 + 3t − t2)dt

4

2π∫
π

cos(3u)du

5

2∫
1

4+x2

x3
dx
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Integral Types

List some differences and identifying features of the three types of
integrals that we have seen

Indefinite Integrals Definite Integrals Integral Functions
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The Definite Integral and Area

Now that we know how to solve integrals by using antiderivatives, we can
use them to solve the area problem!.

Check out this link for a video on area and the definite integral!
https://www.educreations.com/lesson/embed/9882449/?ref=app

Find the area bounded by:

1 f (x) = x2, the x-axis, and the lines x = 0 and x = 1.

2 f (x) = x − 1, the x-axis, and the lines x = 0 and x = 3.

3 f (x) = sin x , the x-axis, and the lines x = −π
2 and x = π

2 .

4 the x-axis, the lines x = −2 and x = 2, and

f (x) =

{
x3 if x < 0

x2 if x ≥ 0
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The Definite Integral and Area
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Five in Five!

Solve the following in 5 minutes or less!
1 Integrate

∫
(x4 − 1

3√
x2

+ e4x − xπ + π)dx .

2 The acceleration of an object moving along the x-axis with
0 ≤ t ≤ 10 is specified by a(t) = 120t − 12t2. Furthermore, the
position of the particle at t = 0 is 4m, and it starts from rest. State
the velocity and position functions.

3 Solve
π∫
0

sin xdx .

4 Solve
e∫
1

1
x dx .

5 Find the area bounded by f (x) = |1− x |, the x-axis, and the lines
x = 0 and x = 2.
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Flex the Mental Muscle!

For the following statements, classify them as TRUE or FALSE. If they are
true, give some justification, and if they are false, give a counterexample
(a function, a sketch, etc) that shows that they are false.

1 We can find the antiderivative of a rational function by using the
quotient rule in reverse.

2 If we wish to find a unique solution when solving for f (t) from f (9)(t)
(the 9th derivative), we must have exactly 9 conditions, one for each
lower-order derivative.

3 In order to find the area under the curve f (x), above the x-axis, and
between the lines x = a and x = b using Reimann Sums, we must use
infinitely many rectangles to get an exact value for area.

4 For a continuous function f(x), the definite integral of f(x) from x=a
to x=b gives the area of the region bounded by f(x) and the x-axis
from x=a to x=b.

5 The area of a region below the x-axis is negative.
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