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1. Evaluate the following limits. If the limit does not exist or is oo indicate that.
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2. Find the derivative f'(z) in each case. DO NOT SIMPLIFY your answers.
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[6] 3. Let

224z ifz>-1;
Jz) = {k2+kw if 7 < =1,

Find the value or values of k for which f is continuous at z = —1. You MUST
use limits to justify your answers.

Solution:

lim f(z)= lim K +kz=k —k

T——1- T——1"

lim f(z)= lim+x2+:c= 0

T——1*1 z——1
Therefore lhill f(z) exists if k> —k=0o0r k=0,1

If k=0, then zl_i‘n_ll f(z) = 0= f(-1) and therefore f is continuous at z = —1

If k=1, then lim1 f(z) = 0= f(—1) and therefore f is continuous at z = —1.
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[8] 5. Let y be a function of z which satisfies the equation 2z + y — v/2sin(zy) = g

Find the slope of the tangent to the function at the point (g, 1).

Solution:
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[6] 6. Use only the definition of the derivative to find f(z) if f(z) =
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7. A light sits on the ground 20m from a building. A man 2m tall walks away from
the light directly toward the building at 1m/s. How fast is the length of his
shadow on the building changing when he is 14m from the building?

Solution:

diagram

variables: distance from light=z, height of shadow =s 1
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The length of the shadow is decreasing at 10/9 m/sec. 1
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