UNIVERSITY OF MANITOBA

DATE: February 29, 2008

MIDTERM

DEPARTMENT & COURSE NO: MATH 1500

PAGE: 1 of 5 TIME: 1 hour

EXAMINATION: Intro Calculus

EXAMINER: Various

1. Evaluate the following limits. If the limit does not exist or is $\pm \infty$ indicate that.

(a)
$$\lim_{x \to 2} \frac{\sqrt{x+2} - \sqrt{2x}}{x-2}$$

Solution:

$$\lim_{x \to 2} \frac{\sqrt{x+2} - \sqrt{2x}}{x-2} = \lim_{x \to 2} \frac{\sqrt{x+2} - \sqrt{2x}}{x-2} \cdot \frac{\sqrt{x+2} + \sqrt{2x}}{\sqrt{x+2} + \sqrt{2x}} \quad 1$$

$$= \lim_{x \to 2} \frac{x+2-2x}{x-2} \cdot \frac{1}{\sqrt{x+2} + \sqrt{2x}} \quad 1$$

$$= -\lim_{x \to 2} \frac{1}{\sqrt{x+2} + \sqrt{2x}} \quad 1$$

$$= -\frac{1}{4} \quad 1$$

(b) $\lim_{x \to -\infty} \frac{\sqrt{x^2 + 2x}}{2x + 1}$ [3]

Solution:

MKI

 $\lim_{x \to -\infty} \frac{\sqrt{x^2 + 2x}}{2x + 1} = 0$

[4] (c)
$$\lim_{x \to (-2)^{-}} \frac{x^2 + 5x + 6}{x(x+2)^2}$$

Solution:

 $\lim_{x \to (-2)^{-}} \frac{x^2 + 5x + 6}{x(x+2)^2} = \lim_{x \to (-2)^{-}} \frac{x+3}{x(x+2)}$

 $=+\infty$

UNIVERSITY OF MANITOBA DATE: February 29, 2008

DEPARTMENT & COURSE NO: MATH 1500 EXAMINATION: Intro Calculus

(a) $f(x) = (5x)^5 + \frac{1}{5x} + (5x)^{1/5} + (5\pi)^{-5}$

2. Find the derivative f'(x) in each case. DO NOT SIMPLIFY your answers.

MIDTERM PAGE: 2 of 5

TIME: 1 hour

EXAMINER: Various

-1 For no

 $f'(x) = 25(5x)^{4} \qquad 1$ $-\frac{1}{5x^{2}} \qquad 1$ $(5x)^{-4/5} \qquad 1$ $0 \qquad (5x)^{-4/5} \qquad 1$ $0 \qquad (5x)^{-4/5} \qquad 1$

(b) $f(x) = (x^2 + 1) \tan x$

Solution:

Solution:

[4]

4

1]

 $f'(x) = 2x \tan x$

 $+ (x^2 + 1)\sec^2 x$

(c) $f(x) = \frac{1 + \cos x}{1 + \sin x}$ Solution: $f'(x) = (1 + \sin x)(-\sin x) - (1 + \cos x)\cos x$

(d) $f(x) = e^{\sqrt{x^2+1}}$

Solution:

 $(1+\sin x)^2$

1

2

1

1

UNIVERSITY OF MANITOBA

DATE: February 29, 2008

MIDTERM PAGE: 3 of 5

1

1

2 1

1

DEPARTMENT & COURSE NO: MATH 1500 EXAMINATION: Intro Calculus

TIME: 1 hour EXAMINER: Various

[6] 3. Let

$$f(x) = \begin{cases} x^2 + x & \text{if } x \ge -1; \\ k^2 + k x & \text{if } x < -1. \end{cases}$$

Find the value or values of k for which f is continuous at x = -1. You MUST use limits to justify your answers.

Solution:

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} k^{2} + k x = k^{2} - k$$

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} x^2 + x = 0$$

Therefore
$$\lim_{x\to -1} f(x)$$
 exists if $k^2-k=0$ or $k=0,1$
If $k=0$, then $\lim_{x\to -1} f(x)=0=f(-1)$ and therefore f is continuous at $x=-1$

If
$$k = 1$$
, then $\lim_{x \to -1} f(x) = 0 = f(-1)$ and therefore f is continuous at $x = -1$.

4. If
$$f$$
 is differentiable, prove that

$$\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x).$$

$$\overline{dz}$$

Solution:
$$\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x).$$

$$(cf)'(x) = \lim_{h \to 0} \frac{(cf)(x+h) - (cf)(x)}{h}$$
 2

$$= \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h}$$

$$= c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= cf'(x)$$
1

1

UNIVERSITY OF MANITOBA

DATE: February 29, 2008

TIME: 1 hour EXAMINER: Various

MIDTERM PAGE: 4 of 5

EXAMINATION: Intro Calculus

DEPARTMENT & COURSE NO: MATH 1500

Find the slope of the tangent to the function at the point $(\frac{\pi}{4}, 1)$. Solution:

5. Let y be a function of x which satisfies the equation $2x + y - \sqrt{2}\sin(xy) = \frac{\pi}{2}$.

$$2 + y' - [\sqrt{2}\cos(xy)](y + xy') = 0$$

$$4 + (\pi/4, 1), \quad 2 + y' - (1 + \frac{\pi}{4}y') = 0$$

$$y' = \frac{1}{\pi/4 - 1}$$

$$1$$
6 Use only the definition of the derivative tensor of the deri

$$y' = \frac{1}{\pi/4 - 1} \qquad 1$$
6. Use only the definition of the derivative to find $f'(x)$ if $f(x) = \frac{1}{2x + 1}$.

Solution:
$$f'(x) = \lim_{h \to 0} \frac{\frac{1}{2(x + h) + 1} - \frac{1}{2x + 1}}{h} \qquad 1 + 2$$

$$= \lim_{h \to 0} \frac{2x + 1 - (2(x + h) + 1)}{h(2(x + h) + 1)(2x + 1)} \qquad 1$$

$$= \lim_{h \to 0} \frac{-2h}{h(2(x + h) + 1)(2x + 1)}$$

$$= \lim_{h \to 0} \frac{-2}{h(2(x + h) + 1)(2x + 1)}$$

Solution:

$$f'(x) = \lim_{h \to 0} \frac{\frac{1}{2(x+h)+1} - \frac{1}{2x+1}}{h}$$

$$= \lim_{h \to 0} \frac{2x+1 - (2(x+h)+1)}{h(2(x+h)+1)(2x+1)}$$

$$= \lim_{h \to 0} \frac{-2h}{h(2(x+h)+1)(2x+1)}$$

$$= \lim_{h \to 0} \frac{-2}{(2(x+h)+1)(2x+1)}$$

$$= \frac{-2}{(2x+1)^2}$$
1

UNIVERSITY OF MANITOBA DATE: February 29, 2008

DEPARTMENT & COURSE NO: MATH 1500 EXAMINATION: Intro Calculus

EXAMINER: <u>Various</u>

MIDTERM

PAGE: 5 of 5 TIME: 1 hour

7. A light sits on the ground 20m from a building. A man 2m tall walks away from the light directly toward the building at 1m/s. How fast is the length of his shadow on the building changing when he is 14m from the building?

×	Solution	on:		
		diagram		
		variables: distance from light= x , height of shadow = s	1	
		$\frac{2}{x} = \frac{s}{20}$	1	
		$s = \frac{40}{x}$	1	
		$\frac{dx}{dt} = 1; \left. \frac{ds}{dt} \right _{x=6} = ?$	1	
		$\frac{ds}{dt} = -\frac{40}{x^2} \frac{dx}{dt}$	2	
H.		$\frac{ds}{dt}\Big _{x=6} = -\frac{40}{36}$	1	
		The length of the shadow is decreasing at 10/9 m/sec.	1	

$$=\frac{S}{20}$$