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[9] 1. Consider the linear system:

1 + 31132 + 651;4
T + 3$2 + 4173 = 2$4
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(b) Find a solution to the above system with z; = —2 and z4 = 3.
K= 4o3-2)-6R) = +6-18= -8
Ky == 24/
Xy = \+21)= o

Xk{ = 3//

3 2
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5 2 LetA:[_4 8],3:[2 ? 1],0_{—(2) ﬂ

In each part below, evaluate the expression or state that it does not exist. If the expres-
sion does not exist, give a reason.
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2 11
9 3. LetA= (1 0 1|. Find A™! by the method of row reduction. Show all your work.
2 =10

Write your final answer where indicated at the bottom of the page. (No Credit for any
other method.)
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Answer: A1 = 7’/3 -*1/3 5 ‘5
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[9] 4. Express A = [(1) g] as a product of elementary matrices. Show all your work.

Step(D) : 5 = oy
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9] 5 Let A= -|}‘0“'2 ’1] , and assume B is another 3 x 3 matrix with det(B) = 5.
-4 1 2

(a) Find det(A), by expansion along row 2. (No Credit for any other method.)
det(p) =0 21\+2 Val-11v2
(& \ \ 2 - z& - \\
O 42(2-Ce)-1(1-(-8)) = 209-1 () = | v

(b) Find the determinant of BABT.

dek (= RY = Adet (R)d et () dEf‘L“(&%T)
= det(RY det®)det (R) = SIW) (B) = 235

(¢) Find the determinant of (2B)A~!.

d ek (@%\h“) - det (2R det (87)
= 23k @ det(e™) = 8(9)(F) =
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[8] 6. Use Cramer’s rule to solve the following system. (No Credit for any other method)

N ol ”“L‘ 4z —2y=4
A=lz \21, BD’LBL = 5 deb®) = Hr6=10
p. = L\?\) *ﬂ | det(n ) =10, é\l_: L(‘g \‘EL det (h)= w-n=0

SO X = = e&’(ﬂ )_\)
‘ 019%(9> \D Ci 3 /-\\&{(‘Q’> Té = O
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[8] 7. Assume that the augmented matrix of a certain linear system can be reduced to
10 3|4
01 2|5
00 afb

Determine all values of a and b (if any) for which this system

with elementary row operations.
(a) has no solutions:
-0 620 (hen & ol be Intonsislent)

(b) has a unique solution:

A+0, b+0O (hen Xy = 5 5 sove for x 4% >
(c) has infinitely many solutions:
A=0 =i (H\et\ X3 i\ e fe""

(d) In case (c), determine the general solution.

X =% Ry=b—2t . X =4%-2L



	img392.pdf
	img393
	img394
	img395

