Operator-valued Schur multipliers and Herz-Schur multipliers of dynamical systems

Lyudmila Turowska
Chalmers University of Technology and University of Gothenburg

Joint work with
Andrew McKee(Gothenburg) and Ivan Todorov (Belfast)

Banach Algebras 2019
July 11-18, 2019
Outline of the Talk

- Measurable Schur multipliers
- Herz-Schur multipliers
- Schur A-multipliers
- Herz-Schur multipliers for crossed products and transference
- Classes of Herz-Schur multipliers: central and convolution multipliers.
- Approximation
BACKGROUND: MEASURABLE SCHUR MULTIPLIERS

(X, μ) and (Y, ν) standard measure spaces
$H_1 = L^2(X, \mu), H_2 = L^2(Y, \nu)$

$\mathcal{B}(H_1, H_2)$ and $\mathcal{K}(H_1, H_2)$ the spaces of all bounded and resp. compact linear operators from H_1 into H_2.

$L^2(Y \times X)$ identify with $S_2(H_1, H_2)$, the space of all Hilbert-Schmidt operators, via $k \mapsto T_k$,

$$(T_k f)(y) = \int k(y, x)f(x) d\mu(x).$$

For measurable complex-valued function φ on $Y \times X$ define S_{φ} on $S_2(H_1, H_2)$ by

$$S_{\varphi} : T_k \mapsto T_{\varphi k}.$$

φ is called a (measurable) Schur multiplier if

$$\|S_{\varphi}(T_k)\|_{\text{op}} \leq C\|T_k\|_{\text{op}}, \forall k \in L^2(Y \times X).$$
BACKGROUND: **Measurable Schur multipliers**

\((X, \mu)\) and \((Y, \nu)\) standard measure spaces

\[H_1 = L^2(X, \mu), \quad H_2 = L^2(Y, \nu) \]

\(\mathcal{B}(H_1, H_2)\) and \(\mathcal{K}(H_1, H_2)\) the spaces of all bounded and resp. compact linear operators from \(H_1\) into \(H_2\).

\(L^2(Y \times X)\) identify with \(S_2(H_1, H_2)\), the space of all Hilbert-Schmidt operators, via \(k \mapsto T_k\),

\[(T_k f)(y) = \int k(y, x)f(x) d\mu(x). \]

For measurable complex-valued function \(\varphi\) on \(Y \times X\) define \(S_\varphi\) on \(S_2(H_1, H_2)\) by

\[S_\varphi : T_k \mapsto T_{\varphi k}. \]

\(\varphi\) is called a (measurable) **Schur multiplier** if

\[\|S_\varphi(T_k)\|_{op} \leq C\|T_k\|_{op}, \quad \forall k \in L^2(Y \times X). \]
BACKGROUND: MEASURABLE SCHUR MULTIPLIERS

(X, μ) and (Y, ν) standard measure spaces

$H_1 = L^2(X, \mu), H_2 = L^2(Y, \nu)$

$\mathcal{B}(H_1, H_2)$ and $\mathcal{K}(H_1, H_2)$ the spaces of all bounded and resp. compact linear operators from H_1 into H_2.

$L^2(Y \times X)$ identify with $S_2(H_1, H_2)$, the space of all Hilbert-Schmidt operators, via $k \mapsto T_k$,

$$(T_k f)(y) = \int k(y, x)f(x)d\mu(x).$$

For measurable complex-valued function φ on $Y \times X$ define S_φ on $S_2(H_1, H_2)$ by

$$S_\varphi : T_k \mapsto T_{\varphi k}.$$

φ is called a (measurable) **Schur multiplier** if

$$\|S_\varphi(T_k)\|_{\text{op}} \leq C\|T_k\|_{\text{op}}, \forall k \in L^2(Y \times X).$$
BACKGROUND: MEASURABLE SCHUR MULTIPLIERS

(X, μ) and (Y, ν) standard measure spaces

$H_1 = L^2(X, \mu), H_2 = L^2(Y, \nu)$

$\mathcal{B}(H_1, H_2)$ and $\mathcal{K}(H_1, H_2)$ the spaces of all bounded and resp. compact linear operators from H_1 into H_2.

$L^2(Y \times X)$ identify with $S_2(H_1, H_2)$, the space of all Hilbert-Schmidt operators, via $k \mapsto T_k$,

$$(T_kf)(y) = \int k(y, x)f(x)d\mu(x).$$

For measurable complex-valued function φ on $Y \times X$ define S_φ on $S_2(H_1, H_2)$ by

$$S_\varphi : T_k \mapsto T_{\varphi k}.$$

φ is called a (measurable) **Schur multiplier** if

$$\|S_\varphi(T_k)\|_{\text{op}} \leq C\|T_k\|_{\text{op}}, \forall k \in L^2(Y \times X).$$
BACKGROUND: MEASURABLE SCHUR MULTIPLIERS

\((X, \mu)\) and \((Y, \nu)\) standard measure spaces

\(H_1 = L^2(X, \mu), H_2 = L^2(Y, \nu)\)

\(\mathcal{B}(H_1, H_2)\) and \(\mathcal{K}(H_1, H_2)\) the spaces of all bounded and resp. compact linear operators from \(H_1\) into \(H_2\).

\(L^2(Y \times X)\) identify with \(S_2(H_1, H_2)\), the space of all Hilbert-Schmidt operators, via \(k \mapsto T_k\),

\[(T_k f)(y) = \int k(y, x)f(x)d\mu(x).\]

For measurable complex-valued function \(\varphi\) on \(Y \times X\) define \(S_\varphi\) on \(S_2(H_1, H_2)\) by

\[S_\varphi : T_k \mapsto T_{\varphi k}.\]

\(\varphi\) is called a (measurable) Schur multiplier if

\[\|S_\varphi(T_k)\|_{op} \leq C\|T_k\|_{op}, \forall k \in L^2(Y \times X).\]
S_φ has then a unique weak* continuous extension to $B(H_1, H_2)$ denoted by S_φ. Let $\mathcal{S}(X, Y)$ the set of all Schur multipliers.

Theorem (Haagerup, Peller)

Let $\varphi \in L^\infty(X \times Y)$. TFAE

(i) φ is a Schur multiplier;

(ii) there exist weakly measurable functions $a : X \to l^2$ and $b : Y \to l^2$ such that

\[\varphi(x, y) = (a(x), b(y))_\varphi = b(y)^* a(x), \text{ a.e. on } X \times Y \]

and
\[\operatorname{esssup}_{x \in X} \|a(x)\|_2 \operatorname{esssup}_{y \in Y} \|b(y)\|_2 < \infty. \]

The correspondence $\varphi \mapsto S_\varphi$ is a complete isometry from $\mathcal{S}(X, Y)$ to $CB_{L^\infty(X), L^\infty(Y)}(\mathcal{K}(L^2(X), L^2(Y)))$, completely bounded maps on $\mathcal{K}(L^2(X), L^2(Y))$ which are $L^\infty(X)$-$L^\infty(Y)$-bimodular.
S_φ has then a unique weak* continuous extension to $\mathcal{B}(H_1, H_2)$ denoted by S_φ. Let $\mathcal{S}(X, Y)$ the set of all Schur multipliers.

Theorem (Haagerup, Peller)

Let $\varphi \in L^\infty(X \times Y)$. TFAE

(i) φ is a Schur multiplier;

(ii) there exist weakly measurable functions $a : X \to l^2$ and $b : Y \to l^2$ such that

\[
\varphi(x, y) = (a(x), b(y))_{l^2} = b(y)^*a(x), \text{ a.e. on } X \times Y
\]

and

\[
\text{esssup}_{x \in X} \|a(x)\|_2 \text{ esssup}_{y \in Y} \|b(y)\|_2 < \infty.
\]

The correspondence $\varphi \mapsto S_\varphi$ is a complete isometry from $\mathcal{S}(X, Y)$ to $CB_{L^\infty(X), L^\infty(Y)}(\mathcal{K}(L^2(X), L^2(Y)))$, completely bounded maps on $\mathcal{K}(L^2(X), L^2(Y))$ which are $L^\infty(X)$-$L^\infty(Y)$-bimodular.
S_φ has then a unique weak* continuous extension to $\mathcal{B}(H_1, H_2)$ denoted by S_φ. Let $\mathcal{S}(X, Y)$ the set of all Schur multipliers.

Theorem (Haagerup, Peller)

Let $\varphi \in L^\infty(X \times Y)$. TFAE

(i) φ is a Schur multiplier;

(ii) there exist weakly measurable functions $a : X \rightarrow l^2$ and $b : Y \rightarrow l^2$ such that

$$\varphi(x, y) = (a(x), b(y))_{l^2} = b(y)^* a(x), \text{ a.e. on } X \times Y$$

and $\text{esssup}_{x \in X} \|a(x)\|_2 \text{ esssup}_{y \in Y} \|b(y)\|_2 < \infty$.

The correspondence $\varphi \mapsto S_\varphi$ is a complete isometry from $\mathcal{S}(X, Y)$ to $\text{CB}_{L^\infty(X), L^\infty(Y)}(\mathcal{K}(L^2(X), L^2(Y)))$, completely bounded maps on $\mathcal{K}(L^2(X), L^2(Y))$ which are $L^\infty(X)$-$L^\infty(Y)$-bimodular.
BACKGROUND: HERZ-SCHUR MULTIPLIERS

Let G be a locally compact group, $\lambda : G \to \mathcal{B}(L^2(G))$ the left regular representation of G, $\lambda(s)\xi(x) = \xi(s^{-1}x)$.

$C^*_r(G) = \lambda(L^1(G))\|\cdot\|_\text{op}$ the reduced C^*-algebra of G:

$\VN(G) = C^*_r(G)^\text{WOT} \subset \mathcal{B}(L^2(G))$ the von Neumann algebra of G

$A(G) = \{ s \mapsto (\lambda(s)\xi, \eta) = \bar{\eta} \ast \check{\xi} : \xi, \eta \in L^2(G) \} \subset C_0(G)$

the Fourier algebra of G.

We have $\VN(G) = A(G)^*$: if $T \in \VN(G)$ and $u(s) = (\lambda(s)\xi, \eta)$,

$$\langle T, u \rangle = (T\xi, \eta).$$

Definition

A function $u : G \to \mathbb{C}$ is called a (completely bounded) multiplier of $A(G)$ if the map

$$m_u : v \mapsto uv$$

is a (completely) bounded map on $A(G)$.
BACKGROUND: HERZ-SCHUR MULTIPLIERS

Let G be a locally compact group, $\lambda : G \to \mathcal{B}(L^2(G))$ the left regular representation of G, $\lambda(s)\xi(x) = \xi(s^{-1}x)$.

$C^*_r(G) = \overline{\lambda(L^1(G))}_{\|\cdot\|_{op}}$ the reduced C^*-algebra of G:

$VN(G) = \overline{C^*_r(G)}^{WOT} \subset \mathcal{B}(L^2(G))$ the von Neumann algebra of G

$A(G) = \{(s \mapsto (\lambda(s)\xi, \eta) = \bar{\eta} \ast \check{\xi} : \xi, \eta \in L^2(G)\} \subset C_0(G)$

the Fourier algebra of G.

We have $VN(G) = A(G)^*$: if $T \in VN(G)$ and $u(s) = (\lambda(s)\xi, \eta)$,

$$\langle T, u \rangle = (T\xi, \eta).$$

Definition

A function $u : G \to \mathbb{C}$ is called a (completely bounded) multiplier of $A(G)$ if the map

$$m_u : v \mapsto uv$$

is a (completely) bounded map on $A(G)$.
BACKGROUND: HERZ-SCHUR MULTIPLIERS

Let G be a **locally compact group**, $\lambda : G \to B(L^2(G))$ the left regular representation of G, $\lambda(s)\xi(x) = \xi(s^{-1}x)$.

$C^*_r(G) = \overline{\lambda(L^1(G))}_\text{op}$ the reduced C*-algebra of G:

$VN(G) = C^*_r(G)^{\text{WOT}} \subset B(L^2(G))$ the von Neumann algebra of G

$A(G) = \{ s \mapsto (\lambda(s)\xi, \eta) = \check{\eta} * \check{\xi} : \xi, \eta \in L^2(G) \} \subset C_0(G)$

the Fourier algebra of G.

We have $VN(G) = A(G)^*$: if $T \in VN(G)$ and $u(s) = (\lambda(s)\xi, \eta)$,

$$\langle T, u \rangle = (T\xi, \eta).$$

Definition

A function $u : G \to \mathbb{C}$ is called a (completely bounded) multiplier of $A(G)$ if the map

$$m_u : v \mapsto uv$$

is a (completely) bounded map on $A(G)$.
BACKGROUND: HERZ-SCHUR MULTIPLIERS

Let G be a **locally compact group**, $\lambda : G \to \mathcal{B}(L^2(G))$ the left regular representation of G, $\lambda(s)\xi(x) = \xi(s^{-1}x)$.

$C^*_r(G) = \overline{\lambda(L^1(G))}^{\|\cdot\|_{op}}$ the reduced C^*-algebra of G:

$VN(G) = \overline{C^*_r(G)}^{WOT} \subset \mathcal{B}(L^2(G))$ the von Neumann algebra of G

$A(G) = \{ s \mapsto (\lambda(s)\xi, \eta) = \tilde{\eta} \ast \tilde{\xi} : \xi, \eta \in L^2(G) \} \subset C_0(G)$

the Fourier algebra of G.

We have $VN(G) = A(G)^*$: if $T \in VN(G)$ and $u(s) = (\lambda(s)\xi, \eta)$,

$$\langle T, u \rangle = (T\xi, \eta).$$

Definition

A function $u : G \to \mathbb{C}$ is called a **(completely bounded) multiplier** of $A(G)$ if the map

$$m_u : v \mapsto uv$$

is a (completely) bounded map on $A(G)$.
Let $MA(G)$ ($M^{cb}A(G)$) be the set of (completely bounded) multipliers of $A(G)$.

Theorem (J de Canniere & U.Haagerup)

Let $u : G \to \mathbb{C}$ be a bounded continuous function. The following are equivalent:

- $u \in M^{cb}A(G)$;
- There exists a (unique) bounded weak* continuous completely bounded map T on $VN(G)$ such that $T(\lambda_s) = u(s)\lambda_s$;
- There exists a completely bounded linear map R on $C^*_r(G)$ such that
 $$R(\lambda(f)) = \lambda(uf), f \in L^1(G).$$
Let $MA(G)$ ($M^{cb}A(G)$) be the set of (completely bounded) multipliers of $A(G)$.

Theorem (J de Canniere & U.Haagerup)

Let $u : G \to \mathbb{C}$ be a bounded continuous function. The following are equivalent:

- $u \in M^{cb}A(G)$;
- There exists a (unique) bounded weak* continuous completely bounded map T on $VN(G)$ such that $T(\lambda_s) = u(s)\lambda_s$;
- There exists a completely bounded linear map R on $C^*_r(G)$ such that $R(\lambda(f)) = \lambda(uf), f \in L^1(G)$.

Embedding into the Schur Multipliers

Let $\mathcal{S}(G)$ be the measurable Schur multipliers w.r.t. the Haar measure. $\varphi \in \mathcal{S}(G)$ is called *invariant* ($\varphi \in \mathcal{S}_{\text{inv}}(G)$) if for each $r \in G$,

$$\varphi(s, t) = \varphi(sr, tr), \quad \text{a.e.}$$

Given $u : G \to \mathbb{C}$, let $N(u) : G \times G \to \mathbb{C}$ be the function given by

$$N(u)(s, t) = u(st^{-1}), \quad s, t \in G.$$

Theorem (Gilbert ’80, Bożeiko-Fendler ’84, Jolissaint, ’92)

$u \in M^{cb}A(G)$ iff there exists a Hilbert space H and measurable $a, b : G \to H$, such that $N(u)(s, t) = \langle a(s), b(t) \rangle_H$ a.e. and

$$\text{esssup}_s \|a(s)\|_2 \text{ esssup}_t \|b(t)\|_2 < \infty.$$ i.e. $N(u) \in \mathcal{S}(G)$.

Theorem (Spronk ’04, Neufang-Ruan-Spronk ’07, Alaghmandan, Todorov, & T ’17)

Let G be second countable or discrete. The map N is a surjective complete isometry from $M^{cb}A(G)$ to $\mathcal{S}_{\text{inv}}(G)$.
Embedding into the Schur Multipliers

Let $\mathcal{S}(G)$ be the measurable Schur multipliers w.r.t. the Haar measure. \(\varphi \in \mathcal{S}(G) \) is called *invariant* \(\varphi \in \mathcal{S}_{\text{inv}}(G) \) if for each \(r \in G \),

\[
\varphi(s, t) = \varphi(sr, tr), \text{ a.e.}
\]

Given \(u : G \to \mathbb{C} \), let \(N(u) : G \times G \to \mathbb{C} \) be the function given by

\[
N(u)(s, t) = u(st^{-1}), s, t \in G.
\]

Theorem (Gilbert ’80, Bożeiko-Fendler ’84, Jolissaint, ’92)

\(u \in M^{cb}A(G) \) iff there exists a Hilbert space \(H \) and measurable \(a, b : G \to H \), such that \(N(u)(s, t) = \langle a(s), b(t) \rangle_H \) a.e. and

esssup_s \(\|a(s)\|_2 \) esssup_t \(\|b(t)\|_2 \) < \(\infty \). i.e. \(N(u) \in \mathcal{S}(G) \).

Theorem (Spronk ’04, Neufang-Ruan-Spronk ’07, Alaghmandan, Todorov, & T ’17)

Let \(G \) be second countable or discrete. The map \(N \) is a surjective complete isometry from \(M^{cb}A(G) \) to \(\mathcal{S}_{\text{inv}}(G) \).
EMBEDDING INTO THE SCHUR MULTIPLIERS

Let $\mathcal{S}(G)$ be the measurable Schur multipliers w.r.t. the Haar measure. A measurable function $\varphi \in \mathcal{S}(G)$ is called **invariant** $(\varphi \in \mathcal{S}_{\text{inv}}(G))$ if for each $r \in G$,

$$
\varphi(s, t) = \varphi(sr, tr), \quad \text{a.e.}
$$

Given $u : G \to \mathbb{C}$, let $N(u) : G \times G \to \mathbb{C}$ be the function given by

$$
N(u)(s, t) = u(st^{-1}), \quad s, t \in G.
$$

Theorem (Gilbert ’80, Bożeiko-Fendler ’84, Jolissaint, ’92)

$u \in M^{cb}A(G)$ iff there exists a Hilbert space H and measurable $a, b : G \to H$, such that $N(u)(s, t) = \langle a(s), b(t) \rangle_H$ a.e. and

$$
es\text{ssup}_s \|a(s)\|^2 \text{ esssup}_t \|b(t)\|^2 < \infty. \quad \text{i.e. } N(u) \in \mathcal{S}(G).
$$

Theorem (Spronk ’04, Neufang-Ruan-Spronk ’07, Alaghmandan, Todorov, & T ’17)

Let G be second countable or discrete. The map N is a surjective complete isometry from $M^{cb}A(G)$ to $\mathcal{S}_{\text{inv}}(G)$.

Embedding into the Schur Multipliers

Let $\mathcal{S}(G)$ be the measurable Schur multipliers w.r.t. the Haar measure. $\varphi \in \mathcal{S}(G)$ is called **invariant** ($\varphi \in \mathcal{S}_{\text{inv}}(G)$) if for each $r \in G$,

$$\varphi(s, t) = \varphi(sr, tr), \text{ a.e.}$$

Given $u : G \to \mathbb{C}$, let $N(u) : G \times G \to \mathbb{C}$ be the function given by

$$N(u)(s, t) = u(st^{-1}), s, t \in G.$$

Theorem (Gilbert ’80, Bożeiko-Fendler ’84, Jolissaint, ’92)

$u \in M^{cb}A(G)$ iff there exists a Hilbert space H and measurable $a, b : G \to H$, such that $N(u)(s, t) = \langle a(s), b(t) \rangle_H$ a.e. and

$$\text{esssup}_s \|a(s)\|_2 \text{ esssup}_t \|b(t)\|_2 < \infty. \text{ i.e. } N(u) \in \mathcal{S}(G).$$

Theorem (Spronk ’04, Neufang-Ruan-Spronk ’07, Alaghmandan, Todorov, & T ’17)

Let G be second countable or discrete. The map N is a surjective complete isometry from $M^{cb}A(G)$ to $\mathcal{S}_{\text{inv}}(G)$.
Embedding into the Schur Multipliers

Let $\mathcal{S}(G)$ be the measurable Schur multipliers w.r.t. the Haar measure. $\varphi \in \mathcal{S}(G)$ is called *invariant* ($\varphi \in \mathcal{S}_{inv}(G)$) if for each $r \in G$,

$$\varphi(s, t) = \varphi(sr, tr), \text{ a.e.}$$

Given $u : G \to \mathbb{C}$, let $N(u) : G \times G \to \mathbb{C}$ be the function given by

$$N(u)(s, t) = u(st^{-1}), s, t \in G.$$

Theorem (Gilbert ’80, Bożeiko-Fendler ’84, Jolissaint, ’92)

$u \in M^{cb}A(G)$ iff there exists a Hilbert space H and measurable $a, b : G \to H$, such that $N(u)(s, t) = \langle a(s), b(t) \rangle_H$ a.e. and

$$\text{esssup}_s \|a(s)\|_2 \text{ esssup}_t \|b(t)\|_2 < \infty. \text{ i.e. } N(u) \in \mathcal{S}(G).$$

Theorem (Spronk ’04, Neufang-Ruan-Spronk ’07, Alaghmandan, Todorov, & T ’17)

Let G be second countable or discrete. The map N is a *surjective complete isometry* from $M^{cb}A(G)$ to $\mathcal{S}_{inv}(G)$.
Non-Schur multiplier: Transformer of triangular truncation
\[\varphi(x, y) = \chi_\Delta(x, y), \text{ where } \Delta = \{(x, y) \in [0, 1]^2 : x \leq y\} \]
(Gohberg-Krein)

Let \(G \) be a locally compact abelian group with Haar measure \(m \) and
\[\varphi(x, y) = f(x - y), \text{ where } f : G \to \mathbb{C}. \text{ Then } \varphi \text{ is a Schur multiplier (w.r.t. } m) \text{ iff } f = \hat{\mu}, \mu \in M(\hat{G}), \text{ where } M(\hat{G}) \text{ is the space of complex bounded measures on the dual group } \hat{G} \text{ (Bożejko)}\]
Why are we interested?

- generalization of entrywise product of matrices
- link to perturbation theory through double operator integrals
- $M_{cb}^A(G)$
- Herz-Schur multipliers give rise to completely bounded maps on $VN(G)$ and $C^*_r(G)$ so link properties of a group and its associated operator algebras...
- ...approximation
Schur A-multipliers

Let (X, μ), (Y, ν) be standard measure spaces. Let A be a non-degenerate separable C^*-algebra, $A \subset \mathcal{B}(H)$.

For $k \in L^2(Y \times X, \mathcal{B}(H))$ let $T_k : L^2(X, H) \to L^2(Y, H)$ be given by

$$(T_k \xi)(y) = \int_X k(y, x) \xi(x) d\mu(x).$$

If $\mathcal{M} \subseteq \mathcal{B}(H)$ is a C^*-subalgebra, let

$$S_2(Y \times X, \mathcal{M}) = \{ T_k : k \in L^2(Y \times X, \mathcal{M}) \}.$$

Note that, if $w \in L^2(Y \times X)$ and $a \in \mathcal{M}$ then $T_{w \otimes a} = T_w \otimes a$. giving $S_2(Y \times X, \mathcal{M})$ is norm dense in $\mathcal{K}(L^2(X), L^2(Y)) \otimes \mathcal{M}$.
Schur A-multipliers

Let $(X, \mu), (Y, \nu)$ be standard measure spaces. Let A be a non-degenerate separable C^*-algebra, $A \subset \mathcal{B}(H)$.

For $k \in L^2(Y \times X, B(H))$ let $T_k : L^2(X, H) \to L^2(Y, H)$ be given by

$$(T_k \xi)(y) = \int_X k(y, x) \xi(x) d\mu(x).$$

If $\mathcal{M} \subseteq \mathcal{B}(H)$ is a C^*-subalgebra, let

$$S_2(Y \times X, \mathcal{M}) = \{T_k : k \in L^2(Y \times X, \mathcal{M})\}.$$

Note that, if $w \in L^2(Y \times X)$ and $a \in \mathcal{M}$ then $T_{w \otimes a} = T_w \otimes a$. giving $S_2(Y \times X, \mathcal{M})$ is norm dense in $\mathcal{K}(L^2(X), L^2(Y)) \otimes \mathcal{M}$.

Schur A-multipliers

Let $(X, \mu), (Y, \nu)$ be standard measure spaces. Let A be a non-degenerate separable C^*-algebra, $A \subset \mathcal{B}(H)$.

For $k \in L^2(Y \times X, \mathcal{B}(H))$ let $T_k : L^2(X, H) \rightarrow L^2(Y, H)$ be given by

$$(T_k \xi)(y) = \int_X k(y, x) \xi(x) d\mu(x).$$

If $\mathcal{M} \subseteq \mathcal{B}(H)$ is a C^*-subalgebra, let

$$S_2(Y \times X, \mathcal{M}) = \{ T_k : k \in L^2(Y \times X, \mathcal{M}) \}.$$

Note that, if $w \in L^2(Y \times X)$ and $a \in \mathcal{M}$ then $T_{w \otimes a} = T_w \otimes a$. giving $S_2(Y \times X, \mathcal{M})$ is norm dense in $\mathcal{K}(L^2(X), L^2(Y)) \otimes \mathcal{M}$.
Let $\varphi : X \times Y \to CB(A, \mathcal{B}(H))$ be a weakly measurable essentially bounded function. For $k \in L^2(Y \times X, A)$, let $\varphi \cdot k : Y \times X \to \mathcal{B}(H)$ be the function given by

$$(\varphi \cdot k)(y, x) = \varphi(x, y)(k(y, x)), \quad (y, x) \in Y \times X.$$

Let

$$S_\varphi : S_2(Y \times X, A) \to S_2(Y \times X, \mathcal{B}(H))$$

be the linear map given by

$$S_\varphi(T_k) = T_{\varphi \cdot k}, \quad k \in L^2(Y \times X, A).$$

Definition

$\varphi : X \times Y \to CB(A, \mathcal{B}(H))$ will be called a **Schur A-multiplier** if the map S_φ is completely bounded.
Let $\varphi : X \times Y \to CB(A, \mathcal{B}(H))$ be a weakly measurable essentially bounded function. For $k \in L^2(Y \times X, A)$, let $\varphi \cdot k : Y \times X \to \mathcal{B}(H)$ be the function given by

$$(\varphi \cdot k)(y, x) = \varphi(x, y)(k(y, x)), \quad (y, x) \in Y \times X.$$

Let

$$S_{\varphi} : S_2(Y \times X, A) \to S_2(Y \times X, \mathcal{B}(H))$$

be the linear map given by

$$S_{\varphi}(T_k) = T_{\varphi \cdot k}, \quad k \in L^2(Y \times X, A).$$

Definition

$\varphi : X \times Y \to CB(A, \mathcal{B}(H))$ will be called a Schur A-multiplier if the map S_{φ} is completely bounded.
Let \(\varphi : X \times Y \to CB(A, \mathcal{B}(H)) \) be a weakly measurable essentially bounded function. For \(k \in L^2(Y \times X, A) \), let \(\varphi \cdot k : Y \times X \to \mathcal{B}(H) \) be the function given by

\[
(\varphi \cdot k)(y, x) = \varphi(x, y)(k(y, x)), \quad (y, x) \in Y \times X.
\]

Let

\[
S_\varphi : S_2(Y \times X, A) \to S_2(Y \times X, \mathcal{B}(H))
\]

be the linear map given by

\[
S_\varphi(T_k) = T_{\varphi \cdot k}, \quad k \in L^2(Y \times X, A).
\]

Definition

\(\varphi : X \times Y \to CB(A, \mathcal{B}(H)) \) will be called a \textit{Schur A-multiplier} if the map \(S_\varphi \) is completely bounded.
If ϕ is a Schur A-multiplier then the map S_φ possesses a completely bounded extension to a map from $\mathcal{K} \otimes A$ into $\mathcal{K} \otimes \mathcal{B}(H)$.

Let $\mathcal{S}(X, Y; A)$ be the space of all Schur A-multipliers and endow it with the norm

$$\|\varphi\|_m = \|S_\varphi\|_{cb}.$$

- The correspondence $\varphi \mapsto S_\varphi$ from $\mathcal{S}(X, Y, A)$ to $\text{CB}_{L^\infty(X) \otimes I, L^\infty(Y) \otimes I}(\mathcal{K} \otimes A, \mathcal{K} \otimes \mathcal{B}(H))$ is a completely isometric isomorphism.
If φ is a Schur A-multiplier then the map $S_φ$ possesses a **completely bounded extension** to a map from $\mathcal{K} \otimes A$ into $\mathcal{K} \otimes \mathcal{B}(H)$.

Let $\mathcal{S}(X, Y; A)$ be the space of all Schur A-multipliers and endow it with the norm

$$\|\varphi\|_m = \|S_\varphi\|_{cb}.$$

- The correspondence $\varphi \mapsto S_\varphi$ from $\mathcal{S}(X, Y, A)$ to $\text{CB}_L^\infty(X) \otimes I, L^\infty(Y) \otimes I(\mathcal{K} \otimes A, \mathcal{K} \otimes \mathcal{B}(H))$ is a completely isometric isomorphism.
Theorem

Let $\varphi : X \times Y \to \text{CB}(A, \mathcal{B}(H))$ be a weakly measurable function. TFAE:

(i) φ is a Schur A-multiplier;

(ii) there exist a Hilbert space K, a non-degenerate $*$-representation $\rho : A \to \mathcal{B}(K)$ and weakly measurable maps $V : X \to \mathcal{B}(H, K)$ and $W : Y \to \mathcal{B}(H, K)$ with

$$\text{esssup}_{x \in X} \|V(x)\| < \infty \quad \text{and} \quad \text{esssup}_{y \in Y} \|W(y)\| < \infty,$$

such that, for all $a \in A$,

$$\varphi(x, y)(a) = W^*(y)\rho(a)V(x),$$

for almost all $(x, y) \in X \times Y.$
HERZ-SCHUR MULTIPLIERS FOR CROSSED PRODUCTS

Let A be a separable C^*-algebra, $A \subset \mathcal{B}(H)$, and (A, G, α) be a C^*-dynamical system ($\alpha : G \to \text{Aut}(A)$).

Let $L^1(G, A)$ be the space of all A-valued integrable functions on G; it has a structure of $*$-algebra.

Let $\pi : A \to \mathcal{B}(L^2(G, H))$ be the $*$-representation defined by

$$(\pi(a)\xi)(t) = \alpha_{t^{-1}}(a)(\xi(t)), \ t \in G,$$

and $\lambda : G \to \mathcal{B}(L^2(G, H))$ be the (continuous) unitary representation given by

$$(\lambda_t \xi)(s) = \xi(t^{-1}s), \ s, t \in G.$$

The pair (π, λ) is a covariant representation of (A, G, α), i.e. $\lambda_t \pi(a) = \pi(\alpha_t(a)) \lambda_t, \ t \in G$, that gives rise to a $*$-representation $\pi \ltimes \lambda : L^1(G, A) \to \mathcal{B}(L^2(G, H))$ given by

$$(\pi \ltimes \lambda)(f) = \int_G \pi(f(s)) \lambda_s ds, \ f \in L^1(G, A).$$

The reduced crossed product $A \rtimes_{\alpha, r} G$ of A by α is, by definition, the closure of $(\pi \ltimes \lambda)(L^1(G, A))$ in the operator norm of $\mathcal{B}(L^2(G, H))$.

HERZ-SCHUR MULTIPLIERS FOR CROSSED PRODUCTS

Let A be a separable C^*-algebra, $A \subset \mathcal{B}(H)$, and (A, G, α) be a C^*-dynamical system ($\alpha : G \to \text{Aut}(A)$).

Let $L^1(G, A)$ be the space of all A-valued integrable functions on G; it has a structure of $*$-algebra.

Let $\pi : A \to \mathcal{B}(L^2(G, H))$ be the $*$-representation defined by

$$(\pi(a)\xi)(t) = \alpha_{t^{-1}}(a)(\xi(t)), \quad t \in G,$$

and $\lambda : G \to \mathcal{B}(L^2(G, H))$ be the (continuous) unitary representation given by

$$(\lambda_t \xi)(s) = \xi(t^{-1}s), \quad s, t \in G.$$

The pair (π, λ) is a covariant representation of (A, G, α), i.e.

$\lambda_t \pi(a) = \pi(\alpha_t(a)) \lambda_t, \quad t \in G$, that gives rise to a $*$-representation

$\pi \rtimes \lambda : L^1(G, A) \to \mathcal{B}(L^2(G, H))$ given by

$$(\pi \rtimes \lambda)(f) = \int_G \pi(f(s)) \lambda_s ds, \quad f \in L^1(G, A).$$

The reduced crossed product $A \rtimes_{\alpha, r} G$ of A by α is, by definition, the closure of $(\pi \rtimes \lambda)(L^1(G, A))$ in the operator norm of $\mathcal{B}(L^2(G, H))$.
HERZ-SCHUR MULTIPLIERS FOR CROSSED PRODUCTS

Let A be a separable C*-algebra, $A \subset \mathcal{B}(H)$, and (A, G, α) be a C*-dynamical system ($\alpha : G \to \text{Aut}(A)$).

Let $L^1(G, A)$ be the space of all A-valued integrable functions on G; it has a structure of $*$-algebra.

Let $\pi : A \to \mathcal{B}(L^2(G, H))$ be the $*$-representation defined by

\[(\pi(a)\xi)(t) = \alpha_t^{-1}(a)(\xi(t)), \quad t \in G,\]

and $\lambda : G \to \mathcal{B}(L^2(G, H))$ be the (continuous) unitary representation given by

\[(\lambda_t\xi)(s) = \xi(t^{-1}s), \quad s, t \in G.\]

The pair (π, λ) is a covariant representation of (A, G, α), i.e.

\[\lambda_t \pi(a) = \pi(\alpha_t(a)) \lambda_t, \quad t \in G,\]

that gives rise to a $*$-representation $\pi \rtimes \lambda : L^1(G, A) \to \mathcal{B}(L^2(G, H))$ given by

\[(\pi \rtimes \lambda)(f) = \int_G \pi(f(s))\lambda_s ds, \quad f \in L^1(G, A).\]

The reduced crossed product $A \rtimes_{\alpha, r} G$ of A by α is, by definition, the closure of $(\pi \rtimes \lambda)(L^1(G, A))$ in the operator norm of $\mathcal{B}(L^2(G, H))$.

July 13, 2019 14/33
HERZ-SCHUR MULTIPLIERS FOR CROSSED PRODUCTS

Let A be a separable C*-algebra, $A \subset \mathcal{B}(H)$, and (A, G, α) be a C*-dynamical system ($\alpha : G \to \text{Aut}(A)$).

Let $L^1(G, A)$ be the space of all A-valued integrable functions on G; it has a structure of ∗-algebra.

Let $\pi : A \to \mathcal{B}(L^2(G, H))$ be the *-representation defined by

$$(\pi(a)\xi)(t) = \alpha_{t^{-1}}(a)(\xi(t)), \quad t \in G,$$

and $\lambda : G \to \mathcal{B}(L^2(G, H))$ be the (continuous) unitary representation given by

$$(\lambda_t \xi)(s) = \xi(t^{-1}s), \quad s, t \in G.$$

The pair (π, λ) is a covariant representation of (A, G, α), i.e.

$$\lambda_t \pi(a) = \pi(\alpha_t(a)) \lambda_t, \quad t \in G,$$

that gives rise to a *-representation

$$\pi \ltimes \lambda : L^1(G, A) \to \mathcal{B}(L^2(G, H))$$

given by

$$(\pi \ltimes \lambda)(f) = \int_G \pi(f(s)) \lambda_s ds, \quad f \in L^1(G, A).$$

The reduced crossed product $A \rtimes_{\alpha, r} G$ of A by α is, by definition, the closure of $(\pi \ltimes \lambda)(L^1(G, A))$ in the operator norm of $\mathcal{B}(L^2(G, H))$.
Definition

A pointwise measurable function $F : G \to CB(A)$ will be called a *Herz-Schur (A, G, α)-multiplier* if the map

$$S_F : (\pi \otimes \lambda)(L^1(G, A)) \to (\pi \otimes \lambda)(L^1(G, A))$$

given by

$$S_F((\pi \otimes \lambda)(f)) = (\pi \otimes \lambda)(F \cdot f)$$

is completely bounded, where $(F \cdot f)(s) = F(s)(f(s)), f \in L^1(G, A)$.

Let $\mathcal{G}(A, G, \alpha)$ be the set of all Herz-Schur (A, G, α)-multipliers.

If $F \in \mathcal{G}(A, G, \alpha)$ then S_F extends to a completely bounded map S_F on $A \rtimes_{r, \alpha} G$. We let $\|F\|_m = \|S_F\|_{cb}$.

If G is discrete, Herz-Schur multipliers of dynamical systems were also introduced and studied by Bedos and Conti ’15.
Definition

A pointwise measurable function $F : G \to CB(A)$ will be called a **Herz-Schur (A, G, α)-multiplier** if the map

$$S_F : (\pi \rtimes \lambda)(L^1(G, A)) \to (\pi \rtimes \lambda)(L^1(G, A))$$

given by

$$S_F(\pi \rtimes \lambda(f)) = (\pi \rtimes \lambda)(F \cdot f)$$

is completely bounded, where $(F \cdot f)(s) = F(s)(f(s)), f \in L^1(G, A)$.

Let $\mathcal{S}(A, G, \alpha)$ be the set of all Herz-Schur (A, G, α)-multipliers.

If $F \in \mathcal{S}(A, G, \alpha)$ then S_F extends to a completely bounded map S_F on $A \rtimes_{r, \alpha} G$. We let $\|F\|_m = \|S_F\|_{cb}$.

If G is discrete, Herz-Schur multipliers of dynamical systems were also introduced and studied by Bedos and Conti ’15.
Definition

A pointwise measurable function $F : G \to CB(A)$ will be called a \textit{Herz-Schur (A, G, α)-multiplier} if the map

$$S_F : (\pi \ltimes \lambda)(L^1(G, A)) \to (\pi \ltimes \lambda)(L^1(G, A))$$

given by

$$S_F((\pi \ltimes \lambda)(f)) = (\pi \ltimes \lambda)(F \cdot f)$$

is completely bounded, where $(F \cdot f)(s) = F(s)(f(s))$, $f \in L^1(G, A)$.

Let $\mathcal{S}(A, G, \alpha)$ be the set of all Herz-Schur (A, G, α)-multipliers.

If $F \in \mathcal{S}(A, G, \alpha)$ then S_F extends to a completely bounded map S_F on $A \rtimes_{r, \alpha} G$. We let $\|F\|_m = \|S_F\|_{cb}$.

\textit{If G is discrete, Herz-Schur multipliers of dynamical systems were also introduced and studied by Bedos and Conti ’15.}
Definition

A pointwise measurable function $F : G \to \text{CB}(A)$ will be called a \textit{Herz-Schur (A, G, α)-multiplier} if the map

$$S_F : (\pi \rtimes \lambda)(L^1(G, A)) \to (\pi \rtimes \lambda)(L^1(G, A))$$

given by

$$S_F((\pi \rtimes \lambda)(f)) = (\pi \rtimes \lambda)(F \cdot f)$$

is completely bounded, where $(F \cdot f)(s) = F(s)(f(s)), f \in L^1(G, A)$.

Let $\mathcal{S}(A, G, \alpha)$ be the set of all Herz-Schur (A, G, α)-multipliers.

If $F \in \mathcal{S}(A, G, \alpha)$ then S_F extends to a completely bounded map S_F on $A \rtimes_{r, \alpha} G$. We let $\|F\|_m = \|S_F\|_{\text{cb}}$.

If G is discrete, Herz-Schur multipliers of dynamical systems were also introduced and studied by Bedos and Conti ’15.
Transference Result

For $F : G \to CB(A)$, let $\mathcal{N}(F) : G \times G \to CB(A)$ be given by

$$\mathcal{N}(F)(s, t)(a) = \alpha_{t^{-1}}(F(ts^{-1})(\alpha_t(a))), \quad a \in A, \; s, t \in G.$$

Theorem (McKee, Todorov & T, ’18)

Let (A, G, α) be a C*-dynamical system and $F : G \to CB(A)$ be a pointwise measurable map. TFAE:

1. F is a Herz-Schur (A, G, α)-multiplier;
2. $\mathcal{N}(F)$ is a Schur A-multiplier.

Idea: Similar to Jolissaint’s idea for the case $A = \mathbb{C}$ and uses Haagerup-Paulsen-Wittstock theorem and the characterization of Schur A-multipliers.
Transference Result

For \(F : G \to CB(A) \), let \(N(F) : G \times G \to CB(A) \) be given by

\[
N(F)(s, t)(a) = \alpha_{t^{-1}}(F(ts^{-1})(\alpha_t(a))), \quad a \in A, \ s, t \in G.
\]

Theorem (McKee, Todorov & T, ’18)

Let \((A, G, \alpha)\) be a \(C^* \)-dynamical system and \(F : G \to CB(A) \) be a pointwise measurable map. TFAE:

1. \(F \) is a Herz-Schur \((A, G, \alpha)\)-multiplier;
2. \(N(F) \) is a Schur \(A \)-multiplier.

Idea: Similar to Jolissaint’s idea for the case \(A = \mathbb{C} \) and uses Haagerup-Paulsen-Wittstock theorem and the characterization of Schur \(A \)-multipliers.
For $F : G \to CB(A)$, let $\mathcal{N}(F) : G \times G \to CB(A)$ be given by

$$\mathcal{N}(F)(s, t)(a) = \alpha_{t^{-1}}(F(ts^{-1})(\alpha_t(a))), \quad a \in A, \ s, t \in G.$$

Theorem (McKee, Todorov & T, ’18)

Let (A, G, α) be a C^*-dynamical system and $F : G \to CB(A)$ be a pointwise measurable map. TFAE:

1. F is a Herz-Schur (A, G, α)-multiplier;
2. $\mathcal{N}(F)$ is a Schur A-multiplier.

Idea: Similar to Jolissaint’s idea for the case $A = \mathbb{C}$ and uses Haagerup-Paulsen-Wittstock theorem and the characterization of Schur A-multipliers.
Embedding into Schur A-multipliers

Let G be second countable or discrete and let $\mathcal{T}(\varphi) : G \times G \to CB(A)$ be the function given by

$$\mathcal{T}(\varphi)(s, t)(a) = \alpha_t(\varphi(s, t)(\alpha_{t^{-1}}(a))), \quad a \in A.$$

Definition

A Schur A-multiplier $\varphi : G \times G \to CB(A)$ will be called **invariant** if for each $r \in G$

$$\mathcal{T}(\varphi)(s, t) = \mathcal{T}(\varphi)(sr, tr), \quad a.e.$$

Let $\mathcal{G}_{inv}(G, G; A)$ be the set of all invariant Schur A-multipliers; $\varphi \in \mathcal{G}_{inv}(G, G; A)$ if S_φ commutes with $\tilde{\alpha}_t = \text{Ad}_\rho_t \otimes \alpha_t$, $t \in G$, where ρ is the right regular representation.

Theorem (McKee, Todorov & T ’18)

The map \mathcal{N} is a complete isometry from $\mathcal{G}(A, G, \alpha)$ onto $\mathcal{G}_{inv}(G, G; A)$.
Embedding into Schur A-multipliers

Let G be second countable or discrete and let $\mathcal{T}(\varphi) : G \times G \to CB(A)$ be the function given by

$$\mathcal{T}(\varphi)(s, t)(a) = \alpha_t(\varphi(s, t)(\alpha_{t^{-1}}(a))), \quad a \in A.$$

Definition

A Schur A-multiplier $\varphi : G \times G \to CB(A)$ will be called **invariant** if for each $r \in G$

$$\mathcal{T}(\varphi)(s, t) = \mathcal{T}(\varphi)(sr, tr), \quad a.e.$$

Let $\mathcal{G}_{inv}(G, G; A)$ be the set of all invariant Schur A-multipliers; $\varphi \in \mathcal{G}_{inv}(G, G; A)$ if S_φ commutes with $\tilde{\alpha}_t = \text{Ad} \rho_t \otimes \alpha_t$, $t \in G$, where ρ is the right regular representation.

Theorem (McKee, Todorov & T ’18)

The map \mathcal{N} is a complete isometry from $\mathcal{G}(A, G, \alpha)$ onto $\mathcal{G}_{inv}(G, G; A)$.

Embedding into Schur A-Multipliers

Let G be second countable or discrete and let $\mathcal{T}(\varphi): G \times G \to CB(A)$ be the function given by

$$\mathcal{T}(\varphi)(s, t)(a) = \alpha_t(\varphi(s, t)(\alpha_{t^{-1}}(a))), \ a \in A.$$

Definition

A Schur A-multiplier $\varphi: G \times G \to CB(A)$ will be called **invariant** if for each $r \in G$

$$\mathcal{T}(\varphi)(s, t) = \mathcal{T}(\varphi)(sr, tr), \ a.e.$$

Let $\mathcal{G}_{inv}(G, G; A)$ be the set of all invariant Schur A-multipliers; $\varphi \in \mathcal{G}_{inv}(G, G; A)$ if S_φ commutes with $\tilde{\alpha}_t = Ad_\rho_t \otimes \alpha_t$, $t \in G$, where ρ is the right regular representation.

Theorem (McKee, Todorov & T ’18)

The map \mathcal{N} is a complete isometry from $\mathcal{G}(A, G, \alpha)$ onto $\mathcal{G}_{inv}(G, G; A)$.
Classes of Herz-Schur multipliers: multiplication multipliers

Proposition

Let \(u : G \to \mathbb{C} \) be a bounded continuous function, and let \(F_u : G \to CB(A) \) be given by \(F_u(t)(a) = u(t)a, \ a \in A, \ t \in G \). TFAE:

1. \(F_u \) is a Herz-Schur \((A, G, \alpha) \)-multiplier;
2. \(u \in M^{cb}A(G) \).
CLASSES OF HERZ-SCHUR MULTIPLIERS: CENTRAL MULTIPLIERS

A Schur A-multiplier φ is called central if there exists a family $(a_{x,y})_{(x,y)\in X \times Y} \subset Z(A)$ (the center of A) such that

$$\varphi(x, y)(a) = a_{x,y}a, \ a \in A.$$

A Herz-Schur multiplier F of (A, G, α) is central if

$$F(s)(a) = a_s a, \ a \in A$$

for some family $(a_s)_{s \in G} \in Z(A)$.

- If F is a central Herz-Schur multiplier of (A, G, α), S_F is A-bimodule. Those maps were considered by Dong-Ruan when studied Hilbert A-module Haagerup property of crossed product $A \rtimes_{\alpha, r} G$.
- Schur multipliers give rise to central Herz-Schur multipliers of $(\ell^\infty(G), G, \alpha)$:

$$\varphi \in \mathcal{S}(G, G) \rightsquigarrow a_s(p) = \varphi(s^{-1}p^{-1}, p^{-1}) \in \mathcal{S}_{cent}(\ell^\infty(G), G, \alpha)$$
Classes of Herz-Schur multipliers: central multipliers

A Schur A-multiplier φ is called central if there exists a family
\[(a_{x,y})_{(x,y)\in X \times Y} \subset Z(A) \text{ (the center of } A)\] such that
\[\varphi(x, y)(a) = a_{x,y}a, \ a \in A.\]

A Herz-Schur multiplier F of (A, G, α) is central if
\[F(s)(a) = a_s a, \ a \in A\]
for some family $(a_s)_{s \in G} \in Z(A)$.

- If F is a central Herz-Schur multiplier of (A, G, α), S_F is A-bimodule. Those maps were considered by Dong-Ruan when studied Hilbert A-module Haagerup property of crossed product $A \rtimes_{\alpha, r} G$.
- Schur multipliers give rise to central Herz-Schur multipliers of $(\ell^\infty(G), G, \alpha)$:
 \[\varphi \in \mathcal{S}(G, G) \rightsquigarrow a_s(p) = \varphi(s^{-1}p^{-1}, p^{-1}) \in \mathcal{S}_{cent}(\ell^\infty(G), G, \alpha)\]
Classes of Herz-Schur multipliers: central multipliers

A Schur A-multiplier φ is called **central** if there exists a family $(a_{x,y})_{(x,y)\in X\times Y} \subset Z(A)$ (the center of A) such that

$$\varphi(x, y)(a) = a_{x,y}a, \ a \in A.$$

A Herz-Schur multiplier F of (A, G, α) is central if

$$F(s)(a) = a_s a, \ a \in A$$

for some family $(a_s)_{s \in G} \in Z(A)$.

- If F is a central Herz-Schur multiplier of (A, G, α), S_F is A-bimodule. Those maps were considered by Dong-Ruan when studied Hilbert A-module Haagerup property of crossed product $A \rtimes_{\alpha, r} G$.
- Schur multipliers give rise to central Herz-Schur multipliers of $(\ell^\infty(G), G, \alpha)$:

$$\varphi \in \mathcal{G}(G, G) \leadsto a_s(p) = \varphi(s^{-1}p^{-1}, p^{-1}) \in \mathcal{G}_{cent}(\ell^\infty(G), G, \alpha)$$
Theorem (McKee, Pourshahami, Todorov & T)

TFAE

- $\varphi : X \times Y \to Z(A)$ is a central Schur A-multiplier.
- There exist measurable $\alpha_i : X \to Z(A)''$ and $\beta_i : Y \to Z(A)''$ such that

$$\text{esssup}_{x \in X} \| \sum_i \alpha_i^*(x) \alpha_i(x) \| \text{esssup}_{y \in Y} \| \sum_i \beta_i^*(y) \beta_i(y) \| < \infty$$

and $\varphi(x, y) = \sum_{i \in I} \alpha_i(x) \beta_i(y)$ a.e. on $X \times Y$.

Let E, F be operator spaces and M an injective von Neumann algebra. If $\omega : F \otimes_h E \to M$ is a completely bounded map then there exist two families

$$\alpha = (\alpha_i)_{i \in I} \in C^\omega_I(CB(E, M)), \beta = (\beta_i)_{i \in I} \in C^\omega_I(CB(F, M))$$

such that $\|\alpha\|_{cb} \|b\|_{cb} = \|\omega\|_{cb}$ and $\omega(y \otimes x) = \sum_i \beta_i(y) \alpha_i(x), x \in E, y \in F$.

Smith-Sinclair ’98, Le Merdy, Todorov & T ’19
Theorem (McKee, Pourshahami, Todorov & T)

TFAE

• $\varphi : X \times Y \to Z(A)$ is a central Schur A-multiplier.
• there exist measurable $\alpha_i : X \to Z(A)^{''}$ and $\beta_i : Y \to Z(A)^{''}$ such that

$$\text{esssup}_{x \in X} \| \sum_i \alpha_i^*(x) \alpha_i(x) \| \text{esssup}_{y \in Y} \| \sum_i \beta_i^*(y) \beta_i(y) \| < \infty$$

and $\varphi(x, y) = \sum_{i \in I} \alpha_i(x) \beta_i(y)$ a.e. on $X \times Y$.

$\varphi \in \mathcal{G}_{\text{cent}}(X, Y, A) \leadsto \Phi_\varphi : L^1(X) \otimes_h L^1(Y) \to Z(A)^{''}$ a cb map. Then the Smith-Sinclair factorization theorem gives the factorization:

Smith-Sinclair '98, Le Merdy, Todorov & T ’19

Let E, F be operator spaces and M an injective von Neumann algebra. If $\omega : F \otimes_h E \to M$ is a completely bounded map then there exist two families

$$\alpha = (\alpha_i)_{i \in I} \in C^\omega_I(CB(E, M)), \beta = (\beta_i)_{i \in I} \in C^\omega_I(CB(F, M))$$

such that $\|\alpha\|_{cb} \|b\|_{cb} = \|\omega\|_{cb}$ and $\omega(y \otimes x) = \sum_i \beta_i(y) \alpha_i(x), x \in E, y \in F$.
Corollary (McKee, Pourshahami, Todorov & T)

Let \((C(X), G, \alpha)\) be a dynamical system. \(F : G \rightarrow C(X), \ F(r)(a) = a_r a, \ a_r \in C(X), \ r \in G. \) Then \(F\) is a Herz-Schur \((C(X), G, \alpha)\) multiplier \((\Leftrightarrow F \in M_{cb}(\mathcal{G}), \text{where } \mathcal{G} \text{ is the corresponding groupoid})\) iff there exists a Hilbert space \(K\) and weakly measurable functions \(\alpha, \beta : G \times X \rightarrow K\) such that

\[
a_{ts^{-1}}(xt^{-1}) = \langle \alpha(s, x), \beta(t, x) \rangle_K \text{ a.e. on } G \times G \times X.
\]

Question:

What are contractive idempotent central Schur multipliers/ central Herz-Schur multipliers?
Corollary (McKee, Pourshahami, Todorov & T)

Let \((C(X), G, \alpha)\) be a dynamical system. \(F : G \rightarrow C(X), F(r)(a) = a_r a, \ a_r \in C(X), r \in G\). Then \(F\) is a Herz-Schur \((C(X), G, \alpha)\) multiplier \((\Leftrightarrow F \in M_{cb}(\mathcal{G}), \text{where } \mathcal{G} \text{ is the corresponding groupoid})\) iff there exists a Hilbert space \(K\) and weakly measurable functions \(\alpha, \beta : G \times X \rightarrow K\) such that

\[
a_{t_s^{-1}(xt^{-1})} = \langle \alpha(s, x), \beta(t, x) \rangle_K \ a.e. \ on \ G \times G \times X.
\]

Question:

What are contractive idempotent central Schur multipliers/ central Herz-Schur multipliers?
Contractive Schur and Herz-Schur idempotents

Contractive Schur multipliers have been characterized by Katavolos, Paulsen ’05. A set $E \subset X \times Y$ says to have the 3-of-4 property if whenever 3 of 4 ordered pairs $(x_i, y_j), i, j = 1, 2$, belong to E then the fourth pair belong to E.

Livshits’ observation: If $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $S_A : M_2 \to M_2$ is the map given as Schur product by A then $\|S_A\| = 2/\sqrt{3}$. It gives

Theorem (Katavolos, Paulsen ’05)

- χ_E, where $E \subset \mathbb{N} \times \mathbb{N}$, is a Schur multiplier of norm $< 2/\sqrt{3}$ iff $\|\chi_E\|_m = 1$ and E has the 3-of-4 property and hence $E = \bigcup_{n=1}^{\infty} I_m \times J_m$ with $\{I_m\}$, $\{J_m\}$ countable collections of disjoint subsets of \mathbb{N}.

- Let (X, μ) be a standard measure space. Then $\chi_E(x, y)$ is a contractive idempotent Schur multiplier iff $E \simeq \bigcup_{n=1}^{\infty} A_n \times B_n$ (marginally equivalent), where $\{A_n\}_n$, $\{B_n\}_n$ are countable collections of disjoint Borel subsets of X.
Theorem [McKee, Pourshahami, Todorov & T]

Let \(\varphi : X \times Y \times Z \to \mathbb{C} \) be measurable and continuous in \(z \)-variable. TFAE

- \(\varphi \) is a contractive idempotent Schur \(C(Z) \)-multiplier
- \(\varphi(x, y, z) = \sum_{i=1}^{\infty} \chi_{A_i^z}(x) \chi_{B_i^z}(y), (x, y) \text{ a.e., } z \in Z, \) where \(\{A_i^z\}, \{B_i^z\} \) are disjoint Borel sets.

In discrete case \(\varphi = \chi_W \) is a central contractive Schur \(C(Z) \)-multiplier iff \(W_z = \{(x, y) : (x, y, z) \in W\} \) has the 3-of-4 property for each \(z \).

Using the connection between Schur multipliers and Herz-Schur multipliers, Popa Stan ’09 proved

Theorem (Popa Stan ’09)

Let \(G \) be a locally compact group and \(A \subset G \). Then \(\chi_A \) is a contractive idempotent Herz-Schur multiplier iff \(A \) is an open coset in \(G \).
Theorem [McKee, Pourshahami, Todorov & T]

Let \(\varphi : X \times Y \times Z \to \mathbb{C} \) be measurable and continuous in \(z \)-variable. TFAE

- \(\varphi \) is a contractive idempotent Schur \(C(Z) \)-multiplier
- \(\varphi(x, y, z) = \sum_{i=1}^{\infty} \chi_{A_i^z}(x) \chi_{B_i^z}(y), \) \((x, y) \) a.e., \(z \in Z \), where \(\{A_i^z\}, \{B_i^z\} \) are disjoint Borel sets.

In discrete case \(\varphi = \chi_W \) is a central contractive Schur \(C(Z) \)-multiplier iff \(W_z = \{(x, y) : (x, y, z) \in W\} \) has the 3-of-4 property for each \(z \).

Using the connection between Schur multipliers and Herz-Schur multipliers, Popa Stan ’09 proved

Theorem (Popa Stan ’09)

Let \(G \) be a locally compact group and \(A \subset G \). Then \(\chi_A \) is a contractive idempotent Herz-Schur multiplier iff \(A \) is an open coset in \(G \).
Let G be a locally s.c. compact group acting on a locally compact space X, write $\alpha_t(x) = xt, x \in X, t \in G$. The set $\mathcal{G} = X \times G$ is a groupoid. The set of composable pairs is

$$\mathcal{G}^2 = \{[(x_1, t_1), (x_2, t_2)] : x_2 = x_1 t_1\}$$

the inverse $(x, t)^{-1}$ is defined by (xt, t^{-1}).

Corollary[McKee, Pourshahami, Todorov & T]

Let $V \subset X \times G$ be a clopen subset. Then χ_V is a contractive Herz-Schur multiplier of $(C(X), G, \alpha)$ iff $(x, t), (y, s)$ and $(z, p) \in V$ and $(z, p)(y, s)^{-1}(x, t)$ is well defined then the product belongs to V.
Convolution Multipliers

Let $M(G)$ the measure algebra with convolution. There exists a complete isometry (Ghahramani ’78, Neufang ’00)

\[\Theta : M(G) \rightarrow CB_{VN(G)}^{\sigma,L_\infty(G)}(B(L^2(G))), \]

\[\Theta(\mu)(T) = \int_R \rho_s T \rho_s^* d\mu(s), T \in B(L^2(G)). \]

Let $\beta \in \text{Aut}(C_0(G))$ be given by $\beta_t(f)(x) = f(t^{-1}x)$ and consider $C_0(G) \rtimes_{r,\beta} G$. For $\Lambda = (\mu_t)_{t \in G} \subset M(G)$ let

\[F(t)(f) = \Theta(\mu_t)(f) = f \ast \mu_t. \]

Set $S_{\text{conv}}(L^\infty(G), G, \beta)$ to be the set of all such Herz-Schur multipliers so that S_F extends weak* to $L^\infty(G) \rtimes_{r,\beta} G$.

Question

What are the convolution multipliers?
CONVOLUTION MULTIPLIERS

Let $M(G)$ the measure algebra with convolution. There exists a complete isometry (Ghahramani '78, Neufang '00)

$$\Theta : M(G) \rightarrow CB_{\sigma VN(G)}^{\sigma L^\infty(G)}(B(L^2(G))),$$

$$\Theta(\mu)(T) = \int_R \rho_s T \rho_s^* d\mu(s), T \in B(L^2(G)).$$

Let $\beta \in Aut(C_0(G))$ be given by $\beta_t(f)(x) = f(t^{-1}x)$ and consider $C_0(G) \rtimes_{r,\beta} G$. For $\Lambda = (\mu_t)_{t \in G} \subset M(G)$ let

$$F(t)(f) = \Theta(\mu_t)(f) = f \ast \mu_t.$$

Set $S_{conv}(L^\infty(G), G, \beta)$ to be the set of all such Herz-Schur multipliers so that S_F extends weak* to $L^\infty(G) \rtimes_{r,\beta} G$.

Question

What are the convolution multipliers?
CONVOLUTION MULTIPLIERS

Let $M(G)$ the measure algebra with convolution. There exists a complete isometry (Ghahramani ’78, Neufang ’00)

$$\Theta : M(G) \to CB_{\sigma,\ell^\infty(G)}^{\sigma,\ell^\infty(G)}(B(L^2(G)))$$

$$\Theta(\mu)(T) = \int \rho_T \rho_s^* d\mu(s), T \in B(L^2(G)).$$

Let $\beta \in \text{Aut}(C_0(G))$ be given by $\beta_t(f)(x) = f(t^{-1}x)$ and consider $C_0(G) \rtimes_{r,\beta} G$. For $\Lambda = (\mu_t)_{t \in G} \subset M(G)$ let

$$F(t)(f) = \Theta(\mu_t)(f) = f \ast \mu_t.$$

Set $S_{\text{conv}}(L^\infty(G), G, \beta)$ to be the set of all such Herz-Schur multipliers so that S_F extends weak* to $L^\infty(G) \rtimes_{r,\beta} G$.

Question

What are the convolution multipliers?
CONVOLUTION MULTIPLIERS

Let $M(G)$ the measure algebra with convolution. There exists a complete isometry (Ghahramani ’78, Neufang ’00)

$$\Theta : M(G) \rightarrow CB_{VN(G)}^{\sigma,L^\infty(G)}(B(L^2(G))),$$

$$\Theta(\mu)(T) = \int_{\mathbb{R}} \rho_s T \rho_s^* d\mu(s), T \in B(L^2(G)).$$

Let $\beta \in \text{Aut}(C_0(G))$ be given by $\beta_t(f)(x) = f(t^{-1}x)$ and consider $C_0(G) \rtimes_{r,\beta} G$. For $\Lambda = (\mu_t)_{t \in G} \subset M(G)$ let

$$F(t)(f) = \Theta(\mu_t)(f) = f \ast \mu_t.$$

Set $\mathcal{G}_{\text{conv}}(L^\infty(G), G, \beta)$ to be the set of all such Herz-Schur multipliers so that S_F extends weak* to $L^\infty(G) \rtimes_{r,\beta} G$.

Question

What are the convolution multipliers?
CONVOLUTION MULTIPLIERS

Let $M(G)$ the measure algebra with convolution. There exists a complete isometry (Ghahramani ’78, Neufang ’00)

$$\Theta : M(G) \to CB_{\sigma, L^\infty(G)}^\Lambda (B(L^2(G))),$$

$$\Theta(\mu)(T) = \int_R \rho_s T \rho_s^* d\mu(s), T \in B(L^2(G)).$$

Let $\beta \in \text{Aut}(C_0(G))$ be given by $\beta_t(f)(x) = f(t^{-1}x)$ and consider $C_0(G) \rtimes_{r,\beta} G$. For $\Lambda = (\mu_t)_{t \in G} \subset M(G)$ let

$$F(t)(f) = \Theta(\mu_t)(f) = f * \mu_t.$$

Set $\mathcal{G}_{conv}(L^\infty(G), G, \beta)$ to be the set of all such Herz-Schur multipliers so that S_F extends weak* to $L^\infty(G) \rtimes_{r,\beta} G$.

Question

What are the convolution multipliers?
Any \(F(t) = u(t)\Theta(\mu) = \Theta(u(t)\mu), t \in G, u \in M_{cb}(A(G)), \mu \in M(G), \) is such.

Theorem [McKee, Pourshahami, Todorov & T]

The map \(S : G_{conv}(L^\infty(G), G, \beta) \to M^r_{cb}(L^1(G) \hat{\otimes} A(G)) \)

\[
F(t) = \Theta(\mu_t) \mapsto R(f \otimes v)(s, t) := f \ast \mu_t(s) \otimes v(t), f \in L^1(G), v \in A(G)
\]

is a completely contractive isomorphism.

Here \(M^r_{cb}(L^1(G) \hat{\otimes} A(G)) \) is the set of right completely bounded multipliers \(R \) of \(L^1(G) \hat{\otimes} A(G) \), i.e. \(R(ab) = aR(b), a, b \in L^1(G) \hat{\otimes} A(G) \) and \(R \) is c.b.

- If \(R \in M^r_{cb}(L^1(G) \hat{\otimes} A(G)) \) then for the dual \(R^* \in CB^\sigma(L^\infty(G) \hat{\otimes} VN(G)) \) there exists \((\mu_t)_{t \in G} \) such that
 \[
 R^*(f \otimes \lambda_t) = \Theta(\mu_t)(f) \otimes \lambda_t
 \]

- \(S_F \in CB^\sigma(L^\infty(G) \rtimes_r \beta G) \) can be lifted to a normal c.b. map on \(L^\infty(G) \hat{\otimes} VN(G) \) which is a right \(L^1(G) \hat{\otimes} A(G) \)-module map.

- Use Junge-Neufang-Ruan result ’09 to get \(\Phi_R \in CB^\sigma(B(L^2(G) \otimes L^2(G))) \) associated to \(R \in M_{cb}(L^1(G) \hat{\otimes} A(G)) \) which is a \(VN(G) \hat{\otimes} L^\infty(G) \)-bimodule map. \(\Phi_R|_{L^\infty(G) \rtimes G} = S_F \) for convolution multiplier \(F \) related to \(R \).
Any $F(t) = u(t)\Theta(\mu) = \Theta(u(t)\mu), t \in G, u \in M_{cb}(A(G)), \mu \in M(G)$, is such.

Theorem [McKee, Pourshahami, Todorov & T]

The map $S : \mathcal{S}_{\text{conv}}(L^\infty(G), G, \beta) \to M^r_{cb}(L^1(G)\hat{\otimes}A(G))$

$$F(t) = \Theta(\mu_t) \mapsto R(f \otimes v)(s, t) := f * \mu_t(s) \otimes v(t), f \in L^1(G), v \in A(G)$$

is a completely contractive isomorphism.

Here $M^r_{cb}(L^1(G)\hat{\otimes}A(G))$ is the set of right completely bounded multipliers R of $L^1(G)\hat{\otimes}A(G)$, i.e. $R(ab) = aR(b), a, b \in L^1(G)\hat{\otimes}A(G)$ and R is c.b.

- If $R \in M^r_{cb}(L^1(G)\hat{\otimes}A(G))$ then for the dual $R^* \in CB^\sigma(L^\infty(G)\hat{\otimes}VN(G))$ there exists $(\mu_t)_{t \in G}$ such that

 $$R^*(f \otimes \lambda_t) = \Theta(\mu_t)(f) \otimes \lambda_t$$

- $S_F \in CB^\sigma(L^\infty(G) \rtimes_r, \beta G)$ can be lifted to a normal c.b. map on $L^\infty(G)\hat{\otimes}VN(G)$ which is a right $L^1(G)\hat{\otimes}A(G)$-module map.

- Use Junge-Neufang-Ruan result ’09 to get $\Phi_R \in CB^\sigma(B(L^2(G) \otimes L^2(G))$ associated to $R \in M_{cb}(L^1(G)\hat{\otimes}A(G))$ which is a $VN(G)\hat{\otimes}L^\infty(G)$-bimodule map. $\Phi_R|_{L^\infty(G) \rtimes G} = S_F$ for convolution multiplier F related to R.

Any \(F(t) = u(t)\Theta(\mu) = \Theta(u(t)\mu), \ t \in G, \ u \in M_{cb}(A(G)), \ \mu \in M(G), \) is such.

Theorem [McKee, Pourshahami, Todorov & T]

The map \(S : \mathcal{G}_{conv}(L^\infty(G), G, \beta) \to M_{cb}^r(L^1(G)\hat{\otimes}A(G)) \)

\[
F(t) = \Theta(\mu_t) \mapsto R(f \otimes v)(s, t) := f \ast \mu_t(s) \otimes v(t), f \in L^1(G), v \in A(G)
\]

is a completely contractive isomorphism.

Here \(M_{cb}^r(L^1(G)\hat{\otimes}A(G)) \) is the set of right completely bounded multipliers \(R \) of \(L^1(G)\hat{\otimes}A(G) \), i.e. \(R(ab) = aR(b), \ a, \ b \in L^1(G)\hat{\otimes}A(G) \) and \(R \) is c.b.

- If \(R \in M_{cb}^r(L^1(G)\hat{\otimes}A(G)) \) then for the dual \(R^* \in CB^\sigma(L^\infty(G)\bar{\otimes}VN(G)) \) there exists \((\mu_t)_{t \in G} \) such that

\[
R^*(f \otimes \lambda_t) = \Theta(\mu_t)(f) \otimes \lambda_t
\]

- \(S_F \in CB^\sigma(L^\infty(G) \rtimes_r,\beta G) \) can be lifted to a normal c.b. map on \(L^\infty(G)\bar{\otimes}VN(G) \) which is a right \(L^1(G)\hat{\otimes}A(G) \)-module map.

- Use Junge-Neufang-Ruan result ’09 to get \(\Phi_R \in CB^\sigma(B(L^2(G) \otimes L^2(G)) \) associated to \(R \in M_{cb}(L^1(G)\hat{\otimes}A(G)) \) which is a \(VN(G)\bar{\otimes}L^\infty(G) \)-bimodule map. \(\Phi_R|_{L^\infty(G) \rtimes G} = S_F \) for convolution multiplier \(F \) related to \(R \).
Any $F(t) = u(t)\Theta(\mu) = \Theta(u(t)\mu), t \in G, u \in M_{cb}(A(G)), \mu \in M(G)$, is such.

Theorem [McKee, Pourshahami, Todorov & T]

The map $S : \mathcal{G}_{conv}(L^\infty(G), G, \beta) \to M_{cb}^r(L^1(G)\hat{\otimes}A(G))$ is a completely contractive isomorphism.

$F(t) = \Theta(\mu_t) \mapsto R(f \otimes v)(s, t) := f * \mu_t(s) \otimes v(t), f \in L^1(G), v \in A(G)$

Here $M_{cb}^r(L^1(G)\hat{\otimes}A(G))$ is the set of right completely bounded multipliers R of $L^1(G)\hat{\otimes}A(G)$, i.e. $R(ab) = aR(b), a, b \in L^1(G)\hat{\otimes}A(G)$ and R is c.b.

- If $R \in M_{cb}^r(L^1(G)\hat{\otimes}A(G))$ then for the dual $R^* \in CB^\sigma(L^\infty(G)\bar{\otimes}VN(G))$ there exists $(\mu_t)_{t \in G}$ such that $R^*(f \otimes \lambda_t) = \Theta(\mu_t)(f) \otimes \lambda_t$

- $S_F \in CB^\sigma(L^\infty(G) \rtimes_{r, \beta} G)$ can be lifted to a normal c.b. map on $L^\infty(G)\bar{\otimes}VN(G)$ which is a right $L^1(G)\hat{\otimes}A(G)$-module map.

- Use Junge-Neufang-Ruan result ’09 to get $\Phi_R \in CB^\sigma(B(L^2(G) \otimes L^2(G))$ associated to $R \in M_{cb}(L^1(G)\hat{\otimes}A(G))$ which is a $VN(G)\bar{\otimes}L^\infty(G)$-bimodule map. $\Phi_R|_{L^\infty(G) \rtimes G} = S_F$ for convolution multiplier F related to R.
Question

What are contractive idempotent convolution multipliers?

- If \(G \) is commutative, then \(M_{cb}(L^1(G) \hat{\otimes} A(G)) = B(\hat{G} \times G) \), the Fourier-Stiltjes algebra of \(\hat{G} \times G \). Any contractive idempotent of \(B(\hat{G} \times G) \) is \(\chi_C \) where \(C \) is an open coset (\(\hat{\mu}(s) = \chi_C(s, t) \)). What are open subgroups of \(\hat{G} \times G \)?

- If \(G \) is a general l.c.group, any contractive idempotent measure \(\mu \in M(G) = M_{cb}^r(L^1(G)) \) is given by \(\mu = \gamma m_H \), where \(m_H \) is the Haar measure of a compact subgroup \(H \) and \(\gamma \) is a character of \(H \) (Greenleaf ’65). Hence \(\gamma m_H \otimes \chi_C \in M_{cb}^r(L^1(G) \hat{\otimes} A(G)) \), \(C \) is an open coset of \(G \). The corresponding convolution multiplier is given by \(\mu_t = \chi_C(t)\gamma m_H \).

Are there other contractive idempotents?
Question

What are contractive idempotent convolution multipliers?

- If G is commutative, then $M_{cb}(L^1(G) \hat{\otimes} A(G)) = B(\hat{G} \times G)$, the Fourier-Stiltjes algebra of $\hat{G} \times G$. Any contractive idempotent of $B(\hat{G} \times G)$ is χ_C where C is an open coset ($\hat{\mu}_t(s) = \chi_C(s,t)$). What are open subgroups of $\hat{G} \times G$?

- If G is a general l.c.group, any contractive idempotent measure $\mu \in M(G) = M^r_{cb}(L^1(G))$ is given by $\mu = \gamma m_H$, where m_H is the Haar measure of a compact subgroup H and γ is a character of H (Greenleaf ’65). Hence $\gamma m_H \otimes \chi_C \in M^r_{cb}(L^1(G) \hat{\otimes} A(G))$, C is an open coset of G. The corresponding convolution multiplier is given by $\mu_t = \chi_C(t) \gamma m_H$. Are there other contractive idempotents?
Question

What are contractive idempotent convolution multipliers?

- If G is commutative, then $M_{cb}(L^1(G) \hat{\otimes} A(G)) = B(\hat{G} \times G)$, the Fourier-Stiltjes algebra of $\hat{G} \times G$. Any contractive idempotent of $B(\hat{G} \times G)$ is χ_C where C is an open coset ($\hat{\mu}_t(s) = \chi_C(s, t)$). **What are open subgroups of $\hat{G} \times G$?**

- If G is a general l.c.group, any contractive idempotent measure $\mu \in M(G) = M'_{cb}(L^1(G))$ is given by $\mu = \gamma m_H$, where m_H is the Haar measure of a compact subgroup H and γ is a character of H (Greenleaf '65). Hence $\gamma m_H \otimes \chi_C \in M'_{cb}(L^1(G) \hat{\otimes} A(G))$, C is an open coset of G. The corresponding convolution multiplier is given by $\mu_t = \chi_C(t) \gamma m_H$. **Are there other contractive idempotents?**
APPROXIMATIONS

Let G be a discrete group.

- It has been known that the existence of Herz-Schur multipliers of a particular type encodes various approximation properties of $C^*_r(G)$ (nuclearity, CBAP, exactness,...): if $(\phi_i)_i$ is a net of Herz-Schur multipliers with certain properties then $(S_{\phi_i})_i$ implements an approximation property of $C^*_r(G)$; conversely any family of approximating maps on $C^*_r(G)$ can be 'averaged' into Herz-Schur multipliers.

- One can expect that Herz-Schur multipliers of (A, G, α) will give approximations in $A \rtimes_{r,\alpha} G$.

- We have studied so far
 - Nuclearity (McKee, Skalski, Todorov & T, ’18)
 - The Haagerup property (McKee, Skalski, Todorov & T, ’18)
 - CBAP (McKee, ’18)
 - Exactness (McKee & T, ’19)
 - Compactness/complete compactness of Herz-Schur multipliers of (A, G, α) (He, Todorov & T ’19)
Approximations

Let G be a *discrete group*.

- It has been known that the existence of Herz-Schur multipliers of a particular type encodes various approximation properties of $C_r^*(G)$ (nuclearity, CBAP, exactness,...): if $(\phi_i)_i$ is a net of Herz-Schur multipliers with certain properties then $(S_{\phi_i})_i$ implements an approximation property of $C_r^*(G)$; conversely any family of approximating maps on $C_r^*(G)$ can be ’averaged’ into Herz-Schur multipliers.

- One can expect that Herz-Schur multipliers of (A, G, α) will give approximations in $A \rtimes_{r, \alpha} G$.

- We have studied so far
 - Nuclearity (McKee, Skalski, Todorov & T, ’18)
 - The Haagerup property (McKee, Skalski, Todorov & T, ’18)
 - CBAP (McKee, ’18)
 - Exactness (McKee & T, ’19)
 - Compactness/complete compactness of Herz-Schur multipliers of (A, G, α) (He, Todorov & T ’19)
Approximations

Let G be a *discrete group*.

- It has been known that the existence of Herz-Schur multipliers of a particular type encodes various approximation properties of $C^*_r(G)$ (nuclearity, CBAP, exactness,...): if $(\phi_i)_i$ is a net of Herz-Schur multipliers with certain properties then $(S_{\phi_i})_i$ implements an approximation property of $C^*_r(G)$; conversely any family of approximating maps on $C^*_r(G)$ can be ’averaged’ into Herz-Schur multipliers.

- One can expect that Herz-Schur multipliers of (A, G, α) will give approximations in $A \rtimes_{r, \alpha} G$.

- We have studied so far
 - **Nuclearity** (McKee, Skalski, Todorov & T, ’18)
 - **The Haagerup property** (McKee, Skalski, Todorov & T, ’18)
 - **CBAP** (McKee, ’18)
 - **Exactness** (McKee & T, ’19)
 - **Compactness/complete compactness** of Herz-Schur multipliers of (A, G, α) (He, Todorov & T ’19)
Complete compactness of Herz-Schur multipliers

Let \mathcal{X} be an operator space. A completely bounded map $\Psi : \mathcal{X} \to \mathcal{X}$ ($\Psi \in CC(\mathcal{X})$) is called *completely compact* (due to Wittstock, Saar ’82) if for every $\varepsilon > 0$ there exists a finite dimensional subspace $\mathcal{Y} \subset \mathcal{X}$ such that

$$\text{dist}(\Psi^{(m)}(x), M_m(\mathcal{Y})) < \varepsilon \quad \forall x \in M_m(\mathcal{X}), \quad \|x\| \leq 1 \quad \forall m \in \mathbb{N}.$$

- Finite rank maps are completely compact.
- $CC(\mathcal{X})$ is a closed ideal in $CB(\mathcal{X})$.
- If \mathcal{X} has the completely bounded approximation property (CBAP), i.e. $\text{id} : \mathcal{X} \to \mathcal{X}$ can be approximated in the point norm topology by finite rank maps $\Phi_\alpha \in CB(\mathcal{X})$, $\sup_{\alpha} \|\Phi_\alpha\| < \infty$ then $F(\mathcal{X}) = CC(\mathcal{X})$.

Problem

Characterize completely compact Herz-Schur multipliers/Herz-Schur multipliers of dynamical systems.
Complete compactness of Herz-Schur multipliers

Let \mathcal{X} be an operator space. A completely bounded map $\Psi : \mathcal{X} \rightarrow \mathcal{X}$ ($\Psi \in CC(\mathcal{X})$) is called *completely compact* (due to Wittstock, Saar ’82) if for every $\varepsilon > 0$ there exists a finite dimensional subspace $\mathcal{Y} \subset \mathcal{X}$ such that

$$\text{dist}(\Psi^{(m)}(x), M_m(\mathcal{Y})) < \varepsilon \ \forall x \in M_m(\mathcal{X}), \ |x| \leq 1 \ \forall m \in \mathbb{N}.$$

- Finite rank maps are completely compact.
- $CC(\mathcal{X})$ is a closed ideal in $CB(\mathcal{X})$.
- If \mathcal{X} has the completely bounded approximation property (CBAP), i.e. $\text{id} : \mathcal{X} \rightarrow \mathcal{X}$ can be approximated in the point norm topology by finite rank maps $\Phi_\alpha \in CB(\mathcal{X})$, $\sup_\alpha \|\Phi_\alpha\| < \infty$ then $F(\mathcal{X}) = CC(\mathcal{X})$.

Problem

Characterize completely compact Herz-Schur multipliers/Herz-Schur multipliers of dynamical systems.
COMPLETE COMPACTNESS OF HERZ-SCHUR MULTIPLIERS

Let \mathcal{X} be an operator space. A completely bounded map $\Psi : \mathcal{X} \to \mathcal{X}$ ($\Psi \in CC(\mathcal{X})$) is called *completely compact* (due to Wittstock, Saar ’82) if for every $\varepsilon > 0$ there exists a finite dimensional subspace $\mathcal{Y} \subset \mathcal{X}$ such that

$$\text{dist}(\Psi^{(m)}(x), M_m(\mathcal{Y})) < \varepsilon \ \forall x \in M_m(\mathcal{X}), \|x\| \leq 1 \ \forall m \in \mathbb{N}.$$

- Finite rank maps are completely compact.
- $CC(\mathcal{X})$ is a closed ideal in $CB(\mathcal{X})$.
- If \mathcal{X} has the completely bounded approximation property (CBAP), i.e. id : $\mathcal{X} \to \mathcal{X}$ can be approximated in the point norm topology by finite rank maps $\Phi_\alpha \in CB(\mathcal{X})$, $\sup_\alpha \|\Phi_\alpha\| < \infty$ then $F(\mathcal{X}) = CC(\mathcal{X})$.

Problem

Characterize completely compact Herz-Schur multipliers/Herz-Schur multipliers of dynamical systems.
Theorem [He, Todorov & T, ’19]

Let F be a Herz-Schur multiplier of (A, G, α). Assume $A \rtimes_{r, \alpha} G$ has the CBAP. Then TFAE

1. S_F is completely compact

2. There is $(F_i)_i \in \mathcal{S}(A, G, \alpha)$ such that each F_i is finitely supported, $F_i(s) \in F(A), s \in G, \sup_i \|F_i\|_m < \infty$ and $\|F_i - F\|_m \to 0$

3. There is a sequence $(\varphi_i)_i$ of band finite Schur A-multipliers and f.d. spaces $\mathcal{Y}_i \subset A$ s.t. $\operatorname{Ran}(\alpha_t \circ \varphi_i(s, t) \circ \alpha_{t^{-1}}) \subset \mathcal{Y}_i, s, t \in G$, $\sup_i \|\varphi_i\|_\mathcal{S} < \infty$ and $\|N(F) - \varphi_i\|_m \to 0$.

4. If $A = \mathbb{C}$ then $F \in \overline{A(G)}_{\|\cdot\|_{M_{cb}(A(G))}}$.

(1) \Rightarrow (2): $A \rtimes_{r, \alpha} G$ has the CBAP $\leadsto \{\Phi_\alpha\}$ finite rank, $\sup_\alpha \|\Phi_\alpha\| < \infty, \Phi_\alpha \to \text{id}$ in the point norm topology and $\operatorname{Ran}(\Phi_\alpha)$ in $\text{span}\{\pi(a)\lambda_s : a \in A, s \in G\}$.

Let $\pi(F_\alpha(s)(a)) = \mathcal{E}(\Phi_\alpha(\pi(a)\lambda_s)\lambda_s^*)$ where \mathcal{E} is a faithful conditional expectation from $A \rtimes_{r, \alpha} G$ to A. A subsequence of $\{F_\alpha \circ F\}$ will do the job.

(1) \iff (4) is true if G has the AP.
Theorem [He, Todorov & T, ’19]

Let F be a Herz-Schur multiplier of (A, G, α). Assume $A \rtimes_{r, \alpha} G$ has the CBAP. Then TFAE

1. S_F is completely compact
2. there is $(F_i)_i \in \mathcal{S}(A, G, \alpha)$ such that each F_i is finitely supported, $F_i(s) \in F(A), s \in G$, $\sup_i \|F_i\|_m < \infty$ and $\|F_i - F\|_m \to 0$
3. there is a sequence $(\varphi_i)_i$ of band finite Schur A-multipliers and f.d. spaces $\mathcal{Y}_i \subset A$ s.t. $\text{Ran}(\alpha_t \circ \varphi_i(s, t) \circ \alpha_{t^{-1}}) \subset \mathcal{Y}_i, s, t \in G$, $\sup_i \|\varphi_i\|_\mathcal{S} < \infty$ and $\|\mathcal{N}(F) - \varphi_i\|_m \to 0$.
4. If $A = \mathbb{C}$ then $F \in A(G)^{\|\cdot\|_{cb}(A(G)}}$.

$(1) \Rightarrow (2)$: $A \rtimes_{r, \alpha} G$ has the CBAP $\sim \{\Phi_\alpha\} \text{ finite rank, } \sup_\alpha \|\Phi_\alpha\| < \infty$, $\Phi_\alpha \to \text{id}$ in the point norm topology and $\text{Ran}(\Phi_\alpha)$ in $\text{span}\{\pi(a)\lambda_s : a \in A, s \in G\}$.

Let $\pi(F_\alpha(s)(a)) = \mathcal{E}(\Phi_\alpha(\pi(a)\lambda_s)\lambda_s^*)$ where \mathcal{E} is a faithful conditional expectation from $A \rtimes_{r, \alpha} G$ to A. A subsequence of $\{F_\alpha \circ F\}$ will do the job.

$(1) \Leftrightarrow (4)$ is true if G has the AP.
Theorem[He, Todorov & T, ’19]

Let F be a Herz-Schur multiplier of (A, G, α). Assume $A \rtimes_{r,\alpha} G$ has the CBAP. Then TFAE

1. S_F is completely compact
2. there is $(F_i)_i \in \mathcal{G}(A, G, \alpha)$ such that each F_i is finitely supported, $F_i(s) \in F(A)$, $s \in G$, $\sup_i \|F_i\|_m < \infty$ and $\|F_i - F\|_m \to 0$
3. there is a sequence $(\varphi_i)_i$ of band finite Schur A-multipliers and f.d. spaces $\mathcal{Y}_i \subset A$ s.t. $\text{Ran}(\alpha_t \circ \varphi_i(s, t) \circ \alpha_{t^{-1}}) \subset \mathcal{Y}_i$, $s, t \in G$, $\sup_i \|\varphi_i\|_{\mathcal{G}} < \infty$ and $\|N(F) - \varphi_i\|_m \to 0$.
4. If $A = \mathbb{C}$ then $F \in A(G)^{\|\cdot\|_{M_{cb}(A(G))}}$.

(1)\Rightarrow(2): $A \rtimes_{r,\alpha} G$ has the CBAP $\sim \{\Phi_\alpha\}$ finite rank, $\sup_\alpha \|\Phi_\alpha\| < \infty$, $\Phi_\alpha \to \text{id}$ in the point norm topology and $\text{Ran}(\Phi_\alpha)$ in $\text{span}\{\pi(a)\lambda_s : a \in A, s \in G\}$.

Let $\pi(F_\alpha(s)(a)) = \mathcal{E}(\Phi_\alpha(\pi(a)\lambda_s)\lambda_s^*)$ where \mathcal{E} is a faithful conditional expectation from $A \rtimes_{r,\alpha} G$ to A. A subsequence of $\{F_\alpha \circ F\}$ will do the job.

(1) \Leftrightarrow (4) is true if G has the AP.
Bozejko ’82 constructed φ_n with finite supports $E_n \subset F_\infty$, the free group, such that $\|\varphi_n\|_{MA(F_\infty)} = 1$ and $\|\varphi_n\|_{M_{cb}A(F_\infty)} \geq C\sqrt{n}$. This gives

Proposition

If G is a discrete group containing F_∞ then there exists a compact Herz-Schur multiplier which is not completely compact.

Problem

Find a completely bounded compact Herz-Schur multiplier which is not completely compact.

Saar ’82 constructed a completely bounded map on $\mathcal{K}(H)$ which is compact but not completely compact.

Example

If $T : A \rightarrow A$ is a completely compact such that $\alpha_t \circ T = T \circ \alpha_t$, $t \in G$, and $u \in \overline{A(G)}\|\cdot\|_{M_{cb}(A(G))}$ then $F(t) = u(t)T(a)$, $a \in A$, is a completely compact multiplier of $A \rtimes_{r,\alpha} G$.

In particular, if $T \in \overline{F(A)}$ and G acts amenably on A then S_F can be approximated in cb norm by finite rank operators S_{F_i}, $(F_i)_i \subset \mathcal{S}(A, G, \alpha)$.
Bozejko ’82 constructed φ_n with finite supports $E_n \subset F_\infty$, the free group, such that $\|\varphi_n\|_{MA(F_\infty)} = 1$ and $\|\varphi_n\|_{McbA(F_\infty)} \geq C\sqrt{n}$. This gives

Proposition

If G is a discrete group containing F_∞ then there exists a compact Herz-Schur multiplier which is not completely compact.

Problem

Find a completely bounded compact Herz-Schur multiplier which is not completely compact.

Saar ’82 constructed a completely bounded map on $\mathcal{K}(H)$ which is compact but not completely compact.

Example

If $T : A \to A$ is a completely compact such that $\alpha_t \circ T = T \circ \alpha_t$, $t \in G$, and $u \in \overline{A(G)}^{\|\cdot\|_{Mcb(A(G))}}$ then $F(t) = u(t)T(a)$, $a \in A$, is a completely compact multiplier of $A \rtimes_{r,\alpha} G$.

In particular, if $T \in \overline{F(A)}$ and G acts amenably on A then S_F can be approximated in cb norm by finite rank operators S_{F_i}, $(F_i)_i \subset \mathcal{G}(A, G, \alpha)$.
Bozejko ’82 constructed φ_n with finite supports $E_n \subset F_\infty$, the free group, such that $\|\varphi_n\|_{MA(F_\infty)} = 1$ and $\|\varphi_n\|_{M_{cb}A(F_\infty)} \geq C\sqrt{n}$. This gives

Proposition

If G is a discrete group containing F_∞ then there exists a compact Herz-Schur multiplier which is not completely compact.

Problem

Find a completely bounded compact Herz-Schur multiplier which is not completely compact.

Saar ’82 constructed a completely bounded map on $\mathcal{K}(H)$ which is compact but not completely compact.

Example

If $T : A \to A$ is a completely compact such that $\alpha_t \circ T = T \circ \alpha_t$, $t \in G$, and $u \in A(G)^{\|\cdot\|_{M_{cb}(A(G))}}$ then $F(t) = u(t)T(a)$, $a \in A$, is a completely compact multiplier of $A \rtimes_{r,\alpha} G$.

In particular, if $T \in F(A)$ and G acts amenably on A then S_F can be approximated in cb norm by finite rank operators S_{F_i}, $(F_i)_i \subset \mathcal{G}(A, G, \alpha)$.
Bożejko ’82 constructed φ_n with finite supports $E_n \subset F_\infty$, the free group, such that $\|\varphi_n\|_{M(A(F_\infty))} = 1$ and $\|\varphi_n\|_{M_{cb}A(F_\infty)} \geq C\sqrt{n}$. This gives

Proposition

If G *is a discrete group containing* F_∞ *then there exists a compact Herz-Schur multiplier which is not completely compact.*

Problem

Find a completely bounded compact Herz-Schur multiplier which is not completely compact.

Saar ’82 constructed a completely bounded map on $\mathcal{K}(H)$ which is compact but not completely compact.

Example

If $T : A \rightarrow A$ is a completely compact such that $\alpha_t \circ T = T \circ \alpha_t$, $t \in G$, and $u \in \overline{A(G)} \cdot \|\cdot\|_{M_{cb}(A(G))}$ then $F(t) = u(t)T(a)$, $a \in A$, is a completely compact multiplier of $A \rtimes_{r, \alpha} G$.

In particular, if $T \in \overline{F(A)}$ and G acts amenably on A then S_F can be approximated in cb norm by finite rank operators S_{F_i}, $(F_i)_i \subset \mathcal{G}(A, G, \alpha)$.
REFERENCES

- A. McKee, R. Pourshahami, I.G. Todorov, L. Turowska, On Schur and Herz-Schur multipliers: special cases, in preparation

- W. He, I.G. Todorov, L. Turowska, Compactness properties of Herz-Schur multipliers of dynamical systems, in preparation.
THANK YOU!