Wittstock moduli of elementary operators and their application to generalized notions of amenability

Volker Runde

University of Alberta

Winnipeg, July, 2019
Wittstock moduli, I

Notation

Notation

A, B: C^*-algebras.

$\text{CB}(A, B)$: completely bounded linear maps $A \rightarrow B$.

$\text{CP}(A, B)$: completely positive linear maps $A \rightarrow B$.

Remarks

1. $\text{CP}(A, B) \subset \text{CB}(A, B)$.

2. For A unital and $T \in \text{CP}(A, B)$:
 $$\|T\|_{cb} = \|T\| = \|T(e_A)\|.$$
Wittstock moduli, I

Notation

\(A, B:\ C^*\)-algebras.
Notation

\mathcal{A}, \mathcal{B}: C^*-algebras.

$\mathcal{CB}(\mathcal{A}, \mathcal{B})$: completely bounded linear maps $\mathcal{A} \rightarrow \mathcal{B}$; $\mathcal{CP}(\mathcal{A}, \mathcal{B})$: completely positive linear maps $\mathcal{A} \rightarrow \mathcal{B}$.

Remarks:
1. $\mathcal{CP}(\mathcal{A}, \mathcal{B}) \subset \mathcal{CB}(\mathcal{A}, \mathcal{B})$.
2. For \mathcal{A} unital and $T \in \mathcal{CP}(\mathcal{A}, \mathcal{B})$:
 \[
 \|T\|_{\text{cb}} = \|T\|_{\text{ps}} = \|T(e_\mathcal{A})\|
 \]
Wittstock moduli of elementary operators and their application to generalized notions of amenability

Volker Runde

Notation

\(\mathcal{A}, \mathcal{B}: \text{C}^*\)-algebras.

\(\mathcal{CB}(\mathcal{A}, \mathcal{B})\): completely bounded linear maps \(\mathcal{A} \to \mathcal{B}\).
Wittstock moduli, I

Notation

\(\mathcal{A}, \mathcal{B} \): \(C^\ast \)-algebras.

\(\text{CB}(\mathcal{A}, \mathcal{B}) \): completely bounded linear maps \(\mathcal{A} \to \mathcal{B} \);

\(\text{CP}(\mathcal{A}, \mathcal{B}) \):
Wittstock moduli, I

Notation

- \mathcal{A}, \mathcal{B}: C*-algebras.
- $\mathcal{CB}(\mathcal{A}, \mathcal{B})$: completely bounded linear maps $\mathcal{A} \rightarrow \mathcal{B}$;
- $\mathcal{CP}(\mathcal{A}, \mathcal{B})$: completely positive linear maps $\mathcal{A} \rightarrow \mathcal{B}$.
Wittstock moduli, I

Notation

\(A, \ B: \ \text{C}^*-\text{algebras.}\)

\(\text{CB}(A, B): \ \text{completely bounded linear maps } A \to B;\)

\(\text{CP}(A, B): \ \text{completely positive linear maps } A \to B.\)

Remarks
Notation

\(\mathcal{A}, \mathcal{B} \): \(\mathcal{C}^* \)-algebras.

\(\text{CB}(\mathcal{A}, \mathcal{B}) \): completely bounded linear maps \(\mathcal{A} \to \mathcal{B} \);

\(\text{CP}(\mathcal{A}, \mathcal{B}) \): completely positive linear maps \(\mathcal{A} \to \mathcal{B} \).

Remarks

1. \(\text{CP}(\mathcal{A}, \mathcal{B}) \subset \text{CB}(\mathcal{A}, \mathcal{B}) \).
Wittstock moduli, I

Notation

A, B: C^*-algebras.

$CB(A, B)$: completely bounded linear maps $A \rightarrow B$;

$CP(A, B)$: completely positive linear maps $A \rightarrow B$.

Remarks

1. $CP(A, B) \subset CB(A, B)$.
2. For A unital
Wittstock moduli, I

Notation

\(\mathcal{A}, \mathcal{B} \): \(C^* \)-algebras.

\(\mathcal{CB}(\mathcal{A}, \mathcal{B}) \): completely bounded linear maps \(\mathcal{A} \to \mathcal{B} \);

\(\mathcal{CP}(\mathcal{A}, \mathcal{B}) \): completely positive linear maps \(\mathcal{A} \to \mathcal{B} \).

Remarks

1. \(\mathcal{CP}(\mathcal{A}, \mathcal{B}) \subset \mathcal{CB}(\mathcal{A}, \mathcal{B}) \).

2. For \(\mathcal{A} \) unital and \(T \in \mathcal{CP}(\mathcal{A}, \mathcal{B}) \):
Notation

\(\mathcal{A}, \mathcal{B} \): C*-algebras.

\(\mathcal{CB}(\mathcal{A}, \mathcal{B}) \): completely bounded linear maps \(\mathcal{A} \to \mathcal{B} \);
\(\mathcal{CP}(\mathcal{A}, \mathcal{B}) \): completely positive linear maps \(\mathcal{A} \to \mathcal{B} \).

Remarks

1. \(\mathcal{CP}(\mathcal{A}, \mathcal{B}) \subseteq \mathcal{CB}(\mathcal{A}, \mathcal{B}) \).
2. For \(\mathcal{A} \) unital and \(T \in \mathcal{CP}(\mathcal{A}, \mathcal{B}) \):

\[\| T \|_{cb} = \| T \| = \| T(e_{\mathcal{A}}) \|. \]
Wittstock moduli of elementary operators and their application to generalized notions of amenability

Volker Runde

Wittstock moduli of elementary operators

Generalized notions of amenability

Paulsen’s off-diagonal technique

Conclusion

Advertisements
\[A, B: C^\ast\text{-algebras,} \]
\(\mathbf{A}, \mathbf{B} : \text{C}^*\text{-algebras, } T \in \text{CB}(\mathbf{A}, \mathbf{B}). \)
Wittstock moduli, II

\[A, B: C^*-\text{algebras}, \ T \in CB(A, B). \text{ Define } T^* \in CB(A, B): \]

\[a, b : C^*-\text{algebras}, \ T \in CB(A, B). \text{ Define } T^* \in CB(A, B): \]
\(\mathcal{A}, \mathcal{B} \): \(C^* \)-algebras, \(T \in CB(\mathcal{A}, \mathcal{B}) \). Define \(T^* \in CB(\mathcal{A}, \mathcal{B}) \):

\[
T^*(a) := T(a^*)^* \quad (a \in \mathcal{A}).
\]
\(\mathcal{A}, \mathcal{B}: \text{C}^*\text{-algebras, } T \in \text{CB}(\mathcal{A}, \mathcal{B}). \text{ Define } T^* \in \text{CB}(\mathcal{A}, \mathcal{B}): \\
T^*(a) := T(a^*)^* \quad (a \in \mathcal{A}). \)

Set

\[
\text{Re } T := \frac{1}{2}(T + T^*)
\]
\(\mathcal{A}, \mathcal{B} \): \(C^* \)-algebras, \(T \in CB(\mathcal{A}, \mathcal{B}) \). Define \(T^* \in CB(\mathcal{A}, \mathcal{B}) \):

\[
T^*(a) := T(a^*)^* \quad (a \in \mathcal{A}).
\]

Set

\[
\text{Re } T := \frac{1}{2}(T + T^*)
\]

and

\[
\text{Im } T := \frac{1}{2i}(T - T^*).
\]
\(\mathcal{A}, \mathcal{B} \): \(C^* \)-algebras, \(T \in \mathcal{CB}(\mathcal{A}, \mathcal{B}) \). Define \(T^* \in \mathcal{CB}(\mathcal{A}, \mathcal{B}) \):

\[
T^*(a) := T(a^*)^* \quad (a \in \mathcal{A}).
\]

Set

\[
\text{Re } T := \frac{1}{2}(T + T^*)
\]

and

\[
\text{Im } T := \frac{1}{2i}(T - T^*).
\]

Then

\[
T = \text{Re } T + i \text{ Im } T.
\]
Wittstock moduli, III

Wittstock moduli of elementary operators and their application to generalized notions of amenability

Volker Runde

Wittstock's Decomposition Theorem (Wittstock, 1981 & Paulsen, 1982 & Haagerup, ≈ same time)

Every $T \in CB(A, B(H))$ has a Wittstock modulus $|T|$.

Remarks

1 $|T|$ need not be unique.

2 If A is unital, we can find $|T|$ with $|T|(e_A) = \|T\|_{cb id H}$.

Definitions

Let A, B be C^*-algebras, and let $T \in CB(A, B)$. We call $|T| \in CP(A, B)$ a Wittstock modulus for T if:

1 $|T| \pm \text{Re} T$, $|T| \pm \text{Im} T \in CP(A, B)$.

Advertisements
Definition

Let A, B be C^*-algebras, and let $T \in \mathcal{CB}(A, B)$. We call $|T| \in \mathcal{CP}(A, B)$ a Wittstock modulus for T if:

1. $|T| \pm \text{Re} T, |T| \pm \text{Im} T \in \mathcal{CP}(A, B)$.

Wittstock's Decomposition Theorem (Wittstock, 1981 & Paulsen, 1982 & Haagerup, same time)

Every $T \in \mathcal{CB}(A, B(H))$ has a Wittstock modulus $|T|$.

Remarks

1. $|T|$ need not be unique.

2. If A is unital, we can find $|T|$ with $|T|(e_A) = \|T\|_{cb}$.

Advertisements
Definition

Let A, B be C^*-algebras,
Wittstock moduli, III

Definition

Let \mathcal{A}, \mathcal{B} be C^*-algebras, and let $T \in CB(\mathcal{A}, \mathcal{B})$.

1. $|T| \pm \text{Re} T, |T| \pm \text{Im} T \in CP(\mathcal{A}, \mathcal{B})$.

Wittstock's Decomposition Theorem (Wittstock, 1981 & Paulsen, 1982 & Haagerup, same time)

Every $T \in CB(\mathcal{A}, \mathcal{B}(H))$ has a Wittstock modulus $|T|$.

Remarks

1. $|T|$ need not be unique.
2. If \mathcal{A} is unital, we can find $|T|$ with $|T|(e_{\mathcal{A}}) = \|T\|_{cb \text{id} H}$.

Advertisements
Wittstock moduli, III

Definition

Let \mathcal{A}, \mathcal{B} be C^*-algebras, and let $T \in CB(\mathcal{A}, \mathcal{B})$. We call $|T| \in CP(\mathcal{A}, \mathcal{B})$
Definition

Let \mathcal{A}, \mathcal{B} be C^*-algebras, and let $T \in CB(\mathcal{A}, \mathcal{B})$. We call $|T| \in CP(\mathcal{A}, \mathcal{B})$ a Wittstock modulus for T.

Wittstock's Decomposition Theorem (Wittstock, 1981 & Paulsen, 1982 & Haagerup, same time)

Every $T \in CB(\mathcal{A}, \mathcal{B}(H))$ has a Wittstock modulus $|T|$.

Remarks

1. $|T|$ need not be unique.
2. If \mathcal{A} is unital, we can find $|T|$ with $|T|(e_A) = \|T\|_{cb}$.

Advertisements
Definition

Let \mathcal{A}, \mathcal{B} be C^*-algebras, and let $T \in \mathcal{CB}(\mathcal{A}, \mathcal{B})$. We call $|T| \in \mathcal{CP}(\mathcal{A}, \mathcal{B})$ a **Wittstock modulus** for T if:
Wittstock moduli, III

Definition

Let \mathcal{A}, \mathcal{B} be C^*-algebras, and let $T \in CB(\mathcal{A}, \mathcal{B})$. We call $|T| \in CP(\mathcal{A}, \mathcal{B})$ a **Wittstock modulus** for T if:

1. $|T| \pm \text{Re } T, |T| \pm \text{Im } T \in CP(\mathcal{A}, \mathcal{B})$.

Wittstock's Decomposition Theorem (Wittstock, 1981 & Paulsen, 1982 & Haagerup, ≈ same time)

Every $T \in CB(\mathcal{A}, \mathcal{B}(H))$ has a Wittstock modulus $|T|$.

Remarks

1. $|T|$ need not be unique.
2. If \mathcal{A} is unital, we can find $|T|$ with $|T|(e_\mathcal{A}) = \|T\|_{cb}$.

Advertisements
Wittstock moduli, III

Definition

Let \(\mathcal{A}, \mathcal{B} \) be \(C^* \)-algebras, and let \(T \in CB(\mathcal{A}, \mathcal{B}) \). We call \(|T| \in CP(\mathcal{A}, \mathcal{B}) \) a Wittstock modulus for \(T \) if:

1. \(|T| \pm \text{Re } T, |T| \pm \text{Im } T \in CP(\mathcal{A}, \mathcal{B}). \)

Wittstock’s Decomposition Theorem (Wittstock, 1981 & Paulsen, 1982 & Haagerup, \(\approx \) same time)
Wittstock moduli, III

Definition

Let \mathcal{A}, \mathcal{B} be C^*-algebras, and let $T \in CB(\mathcal{A}, \mathcal{B})$. We call $|T| \in CP(\mathcal{A}, \mathcal{B})$ a *Wittstock modulus* for T if:

1. $|T| \pm \text{Re } T, |T| \pm \text{Im } T \in CP(\mathcal{A}, \mathcal{B})$.

Wittstock’s Decomposition Theorem (Wittstock, 1981 & Paulsen, 1982 & Haagerup, \approx same time)

Every $T \in CB(\mathcal{A}, B(\mathcal{H}))$
Definition

Let \mathcal{A}, \mathcal{B} be C^*-algebras, and let $T \in \text{CB}(\mathcal{A}, \mathcal{B})$. We call $|T| \in \mathcal{CP}(\mathcal{A}, \mathcal{B})$ a Wittstock modulus for T if:

1. $|T| \pm \text{Re } T, |T| \pm \text{Im } T \in \mathcal{CP}(\mathcal{A}, \mathcal{B})$.

Wittstock’s Decomposition Theorem (Wittstock, 1981 & Paulsen, 1982 & Haagerup, \approx same time)

Every $T \in \text{CB}(\mathcal{A}, \mathcal{B}(\mathcal{H}))$ has a Wittstock modulus $|T|$.

Advertisements
Definition

Let \mathcal{A}, \mathcal{B} be C^*-algebras, and let $T \in \mathcal{CB}(\mathcal{A}, \mathcal{B})$. We call $|T| \in \mathcal{CP}(\mathcal{A}, \mathcal{B})$ a Wittstock modulus for T if:

1. $|T| \pm \text{Re } T, |T| \pm \text{Im } T \in \mathcal{CP}(\mathcal{A}, \mathcal{B})$.

Wittstock's Decomposition Theorem (Wittstock, 1981 & Paulsen, 1982 & Haagerup, \approx same time)

Every $T \in \mathcal{CB}(\mathcal{A}, \mathcal{B}(\mathcal{H}))$ has a Wittstock modulus $|T|$.

Remarks
Definition

Let \mathcal{A}, \mathcal{B} be C^*-algebras, and let $T \in CB(\mathcal{A}, \mathcal{B})$. We call $|T| \in CP(\mathcal{A}, \mathcal{B})$ a Wittstock modulus for T if:

1. $|T| \pm \text{Re} T, |T| \pm \text{Im} T \in CP(\mathcal{A}, \mathcal{B})$.

Wittstock’s Decomposition Theorem (Wittstock, 1981 & Paulsen, 1982 & Haagerup, \approx same time)

Every $T \in CB(\mathcal{A}, B(\mathcal{H}))$ has a Wittstock modulus $|T|$.

Remarks

1. $|T|$ need not be unique.
Wittstock moduli, III

Definition

Let \mathcal{A}, \mathcal{B} be C^*-algebras, and let $T \in CB(\mathcal{A}, \mathcal{B})$. We call $|T| \in CP(\mathcal{A}, \mathcal{B})$ a **Wittstock modulus** for T if:

1. $|T| \pm \text{Re}\ T, |T| \pm \text{Im}\ T \in CP(\mathcal{A}, \mathcal{B})$.

Wittstock’s Decomposition Theorem (Wittstock, 1981 & Paulsen, 1982 & Haagerup, \approx same time)

Every $T \in CB(\mathcal{A}, \mathcal{B}(\mathcal{H}))$ has a Wittstock modulus $|T|$.

Remarks

1. $|T|$ need not be unique.
2. If \mathcal{A} is unital,
Wittstock moduli, III

Definition

Let \(\mathcal{A}, \mathcal{B} \) be \(C^* \)-algebras, and let \(T \in \text{CB}(\mathcal{A}, \mathcal{B}) \). We call \(|T| \in \text{CP}(\mathcal{A}, \mathcal{B}) \) a Wittstock modulus for \(T \) if:

1. \(|T| \pm \text{Re } T, |T| \pm \text{Im } T \in \text{CP}(\mathcal{A}, \mathcal{B}) \).

Wittstock’s Decomposition Theorem (Wittstock, 1981 & Paulsen, 1982 & Haagerup, \(\approx \) same time)

Every \(T \in \text{CB}(\mathcal{A}, \mathcal{B}(\mathcal{H})) \) has a Wittstock modulus \(|T| \).

Remarks

1. \(|T| \) need not be unique.
2. If \(\mathcal{A} \) is unital, we can find \(|T| \).
Wittstock moduli, III

Definition

Let \(\mathcal{A}, \mathcal{B} \) be \(C^* \)-algebras, and let \(T \in CB(\mathcal{A}, \mathcal{B}) \). We call \(|T| \in CP(\mathcal{A}, \mathcal{B}) \) a Wittstock modulus for \(T \) if:

1. \(|T| \pm Re \, T, |T| \pm Im \, T \in CP(\mathcal{A}, \mathcal{B}) \).

Wittstock’s Decomposition Theorem (Wittstock, 1981 & Paulsen, 1982 & Haagerup, ≈ same time)

Every \(T \in CB(\mathcal{A}, B(\mathcal{H})) \) has a Wittstock modulus \(|T| \).

Remarks

1. \(|T| \) need not be unique.
2. If \(\mathcal{A} \) is unital, we can find \(|T| \) with \(|T|(e_{\mathcal{A}}) = \| T \|_{cb} \, id_{\mathcal{H}} \).
Elementary operators, I

Definition

Let \(\text{id}_H \in A \subset B(\mathcal{H}) \) be a \(C^* \)-algebra, \(n \in \mathbb{N} \), and let \(a := (a_1, \ldots, a_n), b := (b_1, \ldots, b_n) \in A^n \).

Define \(M_{a,b} \in \mathcal{B}(B(\mathcal{H})) \) via

\[
M_{a,b}(x) := \sum_{j=1}^{n} a_j x b_j \quad (x \in B(\mathcal{H})).
\]

We call \(M_{a,b} \) an elementary operator on \(B(\mathcal{H}) \) with coefficients in \(A \).

Notation

\[
E^\ell A := \text{elementary operators on } B(\mathcal{H}) \text{ with coefficients in } A.
\]
Definition

Let $\text{id}_H \in A \subset B(H)$ be a C^*-algebra, let $n \in \mathbb{N}$, and let $a := (a_1, \ldots, a_n), b := (b_1, \ldots, b_n) \in A^n$. Define $M_{a, b} \in \text{CB}(B(H))$ via $M_{a, b}(x) := \sum_{j=1}^{n} a_j x b_j (x \in B(H))$. We call $M_{a, b}$ an elementary operator on $B(H)$ with coefficients in A.

Notation

$E_\ell^A := \text{elementary operators on } B(H) \text{ with coefficients in } A$
Elementary operators, I

Definition

Let \(\text{id}_\mathcal{H} \in \mathcal{A} \subset B(\mathcal{H}) \) be a \(C^\ast \)-algebra,
Elementary operators, I

Definition

Let \(\text{id}_\mathcal{H} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H}) \) be a \(C^* \)-algebra, let \(n \in \mathbb{N} \),
Elementary operators, I

Definition

Let \(\text{id}_\mathcal{H} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H}) \) be a \(C^* \)-algebra, let \(n \in \mathbb{N} \), and let \(a := (a_1, \ldots, a_n), b := (b_1, \ldots, b_n) \in \mathcal{A}^n \).
Elementary operators, I

Definition

Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset B(\mathcal{H})$ be a C^*-algebra, let $n \in \mathbb{N}$, and let $\alpha := (a_1, \ldots, a_n)$, $\beta := (b_1, \ldots, b_n) \in \mathcal{A}^n$. Define $M_{\alpha, \beta} \in CB(B(\mathcal{H}))$ via
Elementary operators, I

Definition

Let $\text{id}_\mathcal{H} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a \mathcal{C}^*-algebra, let $n \in \mathbb{N}$, and let $\mathbf{a} := (a_1, \ldots, a_n)$, $\mathbf{b} := (b_1, \ldots, b_n) \in \mathcal{A}^n$. Define $M_{\mathbf{a}, \mathbf{b}} \in \mathcal{CB}(\mathcal{B}(\mathcal{H}))$ via

$$M_{\mathbf{a}, \mathbf{b}}(x) := \sum_{j=1}^{n} a_j x b_j \quad (x \in \mathcal{B}(\mathcal{H})).$$
Definition

Let \(\text{id}_{\mathcal{H}} \in \mathcal{A} \subset B(\mathcal{H}) \) be a \(C^* \)-algebra, let \(n \in \mathbb{N} \), and let \(a := (a_1, \ldots, a_n), b := (b_1, \ldots, b_n) \in \mathcal{A}^n \). Define \(M_{a,b} \in CB(B(\mathcal{H})) \) via

\[
M_{a,b}(x) := \sum_{j=1}^{n} a_j x b_j \quad (x \in B(\mathcal{H})).
\]

We call \(M_{a,b} \)
Elementary operators, I

Definition

Let \(\text{id}_\mathcal{H} \in \mathcal{A} \subset B(\mathcal{H}) \) be a \(C^* \)-algebra, let \(n \in \mathbb{N} \), and let
\[
\alpha := (a_1, \ldots, a_n), \quad \beta := (b_1, \ldots, b_n) \in \mathcal{A}^n.
\]
Define
\[
M_{\alpha, \beta} \in CB(B(\mathcal{H})) \text{ via}
\]
\[
M_{\alpha, \beta}(x) := \sum_{j=1}^{n} a_j xb_j \quad (x \in B(\mathcal{H})).
\]

We call \(M_{\alpha, \beta} \) an elementary operator on \(B(\mathcal{H}) \).
Elementary operators, I

Definition

Let \(\text{id}_{\mathcal{H}} \in \mathcal{A} \subset B(\mathcal{H}) \) be a \(C^* \)-algebra, let \(n \in \mathbb{N} \), and let \(a := (a_1, \ldots, a_n), b := (b_1, \ldots, b_n) \in \mathcal{A}^n \). Define \(M_{a,b} \in CB(B(\mathcal{H})) \) via

\[
M_{a,b}(x) := \sum_{j=1}^{n} a_j x b_j \quad (x \in B(\mathcal{H})).
\]

We call \(M_{a,b} \) an elementary operator on \(B(\mathcal{H}) \) with coefficients in \(\mathcal{A} \).
Elementary operators, I

Definition

Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a C^*-algebra, let $n \in \mathbb{N}$, and let $\alpha := (a_1, \ldots, a_n), \beta := (b_1, \ldots, b_n) \in \mathcal{A}^n$. Define $M_{\alpha, \beta} \in \mathcal{C}\mathcal{B}(\mathcal{B}(\mathcal{H}))$ via

$$M_{\alpha, \beta}(x) := \sum_{j=1}^{n} a_j x b_j \quad (x \in \mathcal{B}(\mathcal{H})).$$

We call $M_{\alpha, \beta}$ an elementary operator on $\mathcal{B}(\mathcal{H})$ with coefficients in \mathcal{A}.

Notation
Elementary operators, I

Definition

Let $\text{id}_\mathcal{H} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a C^*-algebra, let $n \in \mathbb{N}$, and let $a := (a_1, \ldots, a_n), \ b := (b_1, \ldots, b_n) \in \mathcal{A}^n$. Define $M_{a,b} \in \mathcal{CB}(\mathcal{B}(\mathcal{H}))$ via

$$M_{a,b}(x) := \sum_{j=1}^{n} a_j x b_j \quad (x \in \mathcal{B}(\mathcal{H})).$$

We call $M_{a,b}$ an elementary operator on $\mathcal{B}(\mathcal{H})$ with coefficients in \mathcal{A}.

Notation

$$\mathcal{E} \mathcal{L}_\mathcal{A}(\mathcal{B}(\mathcal{H}))$$

$:= \text{elementary operators on } \mathcal{B}(\mathcal{H}) \text{ with coefficients in } \mathcal{A}$
Elementary operators, II

Wittstock moduli of elementary operators and their application to generalized notions of amenability
Volker Runde

Wittstock moduli of elementary operators
Generalized notions of amenability
Paulsen’s off-diagonal technique
Conclusion
Advertisements

1 $E_{\ell A}(B(H))$ is a subalgebra of $\mathcal{C}B(B(H))$.

2 $T \in E_{\ell A}(B(H)) \cap \mathcal{C}P(B(H))$ if and only if there are $n \in \mathbb{N}$, $c := (c_1, \ldots, c_n) \in A_n$ such that $T = M_{c, c^*}$ with $c^* := (c_1^*, \ldots, c_n^*)$.

3 $M_{a, b^*} = M_{b, a^*}$.

4 $E_{\ell A}(B(H)) \cong = A \otimes hA$. ($\otimes hA =$ Haagerup tensor product)

Question: Given $T \in E_{\ell A}(B(H))$, can a Wittstock modulus $|T| \in \mathcal{C}B(B(H))$ be found in $E_{\ell A}(B(H))$?

Answer: Yes!
Remarks

E\begin{align*}
\ell & \subset \mathcal{A}(\mathcal{B}(\mathcal{H})) \\
\text{iff} & \exists n \in \mathbb{N}, c := (c_1, \ldots, c_n) \in \mathcal{A}^n \\
& \text{such that} \\
T & = \mathcal{M}_{c, c^*} \quad \text{with} \\
c^* & := (c^*_1, \ldots, c^*_n).
\end{align*}

E\begin{align*}
\ell & \cong \mathcal{A} \otimes h \mathcal{A} \\
& \quad \text{Haagerup tensor product}
\end{align*}

Question: Given $T \in E$\begin{align*}
\ell & \subset \mathcal{B}(\mathcal{H}), \\
\text{can a Wittstock modulus} & |T| \in \mathcal{C} \mathcal{B}(\mathcal{B}(\mathcal{H})) \text{ be found}.
\end{align*}

Answer: Yes!
Remarks

1. \(\mathcal{E}_2(B(H)) \) is a subalgebra of \(CB(B(H)) \).
Remarks

1. $\mathcal{E}\ell_1(B(\mathcal{H}))$ is a subalgebra of $CB(B(\mathcal{H}))$.
2. $T \in \mathcal{E}\ell_1(B(\mathcal{H})) \cap CP(B(\mathcal{H}))$
Elementary operators, II

Remarks

1. \(\mathcal{E}_{\ell_2}(B(\mathcal{H})) \) is a subalgebra of \(CB(B(\mathcal{H})) \).
2. \(T \in \mathcal{E}_{\ell_2}(B(\mathcal{H})) \cap CP(B(\mathcal{H})) \) iff
Elementary operators, II

Remarks

1. $\mathcal{E}_{\ell_2}(B(\mathcal{H}))$ is a subalgebra of $CB(B(\mathcal{H}))$.
2. $T \in \mathcal{E}_{\ell_2}(B(\mathcal{H})) \cap CP(B(\mathcal{H}))$ iff there are $n \in \mathbb{N}$,
Remarks

1. \(\mathcal{E}_{\mathbb{A}}(\mathcal{B}(\mathcal{H})) \) is a subalgebra of \(\mathcal{CB}(\mathcal{B}(\mathcal{H})) \).

2. \(T \in \mathcal{E}_{\mathbb{A}}(\mathcal{B}(\mathcal{H})) \cap \mathcal{CP}(\mathcal{B}(\mathcal{H})) \) iff there are \(n \in \mathbb{N} \), \(\mathbf{c} := (c_1, \ldots, c_n) \in \mathbb{A}^n \) such that...
Elementary operators, II

Remarks

1. $\mathcal{E}_{\mathfrak{A}}(\mathcal{B}(\mathcal{H}))$ is a subalgebra of $\mathcal{CB}(\mathcal{B}(\mathcal{H}))$.

2. $T \in \mathcal{E}_{\mathfrak{A}}(\mathcal{B}(\mathcal{H})) \cap \mathcal{CP}(\mathcal{B}(\mathcal{H}))$ iff there are $n \in \mathbb{N}$, $c := (c_1, \ldots, c_n) \in \mathfrak{A}^n$ such that $T = M_{c,c^*}$.

Question

Given $T \in \mathcal{E}_{\mathfrak{A}}(\mathcal{B}(\mathcal{H}))$, can a Wittstock modulus $|T| \in \mathcal{CB}(\mathcal{B}(\mathcal{H}))$ be found in $\mathcal{E}_{\mathfrak{A}}(\mathcal{B}(\mathcal{H}))$?

Answer

Yes!
Elementary operators, II

Remarks

1. $\mathcal{El}_\mathfrak{A}(\mathcal{B}(\mathcal{H}))$ is a subalgebra of $\mathcal{CB}(\mathcal{B}(\mathcal{H}))$.

2. $T \in \mathcal{El}_\mathfrak{A}(\mathcal{B}(\mathcal{H})) \cap CP(\mathcal{B}(\mathcal{H}))$ iff there are $n \in \mathbb{N}$, $c := (c_1, \ldots, c_n) \in \mathfrak{A}^n$ such that $T = M_{c,c^*}$ with $c^* := (c_1^*, \ldots, c_n^*)$.

Question

Given $T \in \mathcal{El}_\mathfrak{A}(\mathcal{B}(\mathcal{H}))$, can a Wittstock modulus $|T| \in \mathcal{CB}(\mathcal{B}(\mathcal{H}))$ be found in $\mathcal{El}_\mathfrak{A}(\mathcal{B}(\mathcal{H}))$?

Answer

Yes!
Elementary operators, II

Remarks

1. $\mathcal{E}_\mathcal{A}(B(H))$ is a subalgebra of $CB(B(H))$.
2. $T \in \mathcal{E}_\mathcal{A}(B(H)) \cap CP(B(H))$ iff there are $n \in \mathbb{N}$, $c := (c_1, \ldots, c_n) \in \mathcal{A}^n$ such that $T = M_{c,c^*}$ with $c^* := (c_1^*, \ldots, c_n^*)$.
3. $M_{a,b}^* = M_{b^*,a^*}$.
Remarks

1. $\mathcal{E}_\mathcal{A}(\mathcal{B}(\mathcal{H}))$ is a subalgebra of $\mathcal{C}B(\mathcal{B}(\mathcal{H}))$.

2. $T \in \mathcal{E}_\mathcal{A}(\mathcal{B}(\mathcal{H})) \cap \mathcal{C}P(\mathcal{B}(\mathcal{H}))$ iff there are $n \in \mathbb{N}$, $c := (c_1, \ldots, c_n) \in \mathcal{A}^n$ such that $T = M_{c,c^*}$ with $c^* := (c_1^*, \ldots, c_n^*)$.

3. $M_{a,b}^* = M_{b^*,a^*}$.

4. $\mathcal{E}_\mathcal{A}(\mathcal{B}(\mathcal{H})) \cong \mathcal{A} \otimes_h \mathcal{A}$.

Given $T \in \mathcal{E}_\mathcal{A}(\mathcal{B}(\mathcal{H}))$, can a Wittstock modulus $|T| \in \mathcal{C}B(\mathcal{B}(\mathcal{H}))$ be found in $\mathcal{E}_\mathcal{A}(\mathcal{B}(\mathcal{H}))$?

Answer: Yes!
Elementary operators, II

Remarks

1. $\mathcal{E}_{\mathcal{A}}(B(\mathcal{H}))$ is a subalgebra of $CB(B(\mathcal{H}))$.

2. $T \in \mathcal{E}_{\mathcal{A}}(B(\mathcal{H})) \cap CP(B(\mathcal{H}))$ iff there are $n \in \mathbb{N}$, $c := (c_1, \ldots, c_n) \in \mathcal{A}^n$ such that $T = M_{c, c^*}$ with $c^* := (c_1^*, \ldots, c_n^*)$.

3. $M_{a,b}^* = M_{b^*,a^*}$.

4. $\mathcal{E}_{\mathcal{A}}(B(\mathcal{H})) \cong \mathcal{A} \otimes_h \mathcal{A}$. ($\otimes_h = $ Haagerup tensor product)
Remarks

1. $\mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))$ is a subalgebra of $\mathcal{CB}(\mathcal{B}(\mathcal{H}))$.
2. $T \in \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H})) \cap \mathcal{CP}(\mathcal{B}(\mathcal{H}))$ iff there are $n \in \mathbb{N}$, $c := (c_1, \ldots, c_n) \in \mathcal{A}^n$ such that $T = M_{c,c^*}$ with $c^* := (c_1^*, \ldots, c_n^*)$.
3. $M^*_{a,b} = M_{b^*,a^*}$.
4. $\mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H})) \cong \mathcal{A} \otimes_h \mathcal{A}$. ($\otimes_h = \text{Haagerup tensor product}$)
Elementary operators, II

Remarks

1. \(\mathcal{E}_{\mathcal{A}}(B(\mathcal{H})) \) is a subalgebra of \(CB(B(\mathcal{H})) \).
2. \(T \in \mathcal{E}_{\mathcal{A}}(B(\mathcal{H})) \cap CP(B(\mathcal{H})) \) iff there are \(n \in \mathbb{N} \),
\(c := (c_1, \ldots, c_n) \in \mathcal{A}^n \) such that \(T = M_{c,c^*} \) with \(c^* := (c_1^*, \ldots, c_n^*) \).
3. \(M_{a,b}^* = M_{b^*,a^*} \).
4. \(\mathcal{E}_{\mathcal{A}}(B(\mathcal{H})) \cong \mathcal{A} \otimes_h \mathcal{A} \). (\(\otimes_h = \text{Haagerup tensor product} \))

Question

Given \(T \in \mathcal{E}_{\mathcal{A}}(B(\mathcal{H})) \),
Elementary operators, II

Remarks

1. $\ell_{21}(B(H))$ is a subalgebra of $CB(B(H))$.

2. $T \in \ell_{21}(B(H)) \cap CP(B(H))$ iff there are $n \in \mathbb{N}$, $c := (c_1, \ldots, c_n) \in \mathcal{A}^n$ such that $T = M_{c,c^*}$ with $c^* := (c_1^*, \ldots, c_n^*)$.

3. $M_{a,b}^* = M_{b^*,a^*}$.

4. $\ell_{21}(B(H)) \cong \mathcal{A} \otimes_h \mathcal{A}$. ($\otimes_h =$ Haagerup tensor product)

Question

Given $T \in \ell_{21}(B(H))$, can a Wittstock modulus $|T| \in CB(B(H))$ be found.
Elementary operators, II

Remarks

1. $\mathcal{E}_{\mathfrak{A}}(B(\mathcal{H}))$ is a subalgebra of $CB(B(\mathcal{H}))$.

2. $T \in \mathcal{E}_{\mathfrak{A}}(B(\mathcal{H})) \cap \mathcal{CP}(B(\mathcal{H}))$ iff there are $n \in \mathbb{N}$, $c := (c_1, \ldots, c_n) \in \mathfrak{A}^n$ such that $T = M_{c,c^*}$ with $c^* := (c_1^*, \ldots, c_n^*)$.

3. $M_{a,b}^* = M_{b^*,a^*}$.

4. $\mathcal{E}_{\mathfrak{A}}(B(\mathcal{H})) \cong \mathfrak{A} \otimes_h \mathfrak{A}$. ($\otimes_h =$ Haagerup tensor product)

Question

Given $T \in \mathcal{E}_{\mathfrak{A}}(B(\mathcal{H}))$, can a Wittstock modulus $|T| \in CB(B(\mathcal{H}))$ be found in $\mathcal{E}_{\mathfrak{A}}(B(\mathcal{H}))$?
Remarks

1. $\mathcal{E}_\mathfrak{A}(\mathcal{B}(\mathcal{H}))$ is a subalgebra of $\mathcal{C}\mathcal{B}(\mathcal{B}(\mathcal{H}))$.
2. $T \in \mathcal{E}_\mathfrak{A}(\mathcal{B}(\mathcal{H})) \cap \mathcal{C}\mathcal{P}(\mathcal{B}(\mathcal{H}))$ iff there are $n \in \mathbb{N}$, $c := (c_1, \ldots, c_n) \in \mathfrak{A}^n$ such that $T = M_{c,c^*}$ with $c^* := (c_1^*, \ldots, c_n^*)$.
3. $M_{a,b}^* = M_{b^*,a^*}$.
4. $\mathcal{E}_\mathfrak{A}(\mathcal{B}(\mathcal{H})) \cong \mathfrak{A} \otimes_h \mathfrak{A}$. ($\otimes_h = \text{Haagerup tensor product}$)

Question

Given $T \in \mathcal{E}_\mathfrak{A}(\mathcal{B}(\mathcal{H}))$, can a Wittstock modulus $|T| \in \mathcal{C}\mathcal{B}(\mathcal{B}(\mathcal{H}))$ be found in $\mathcal{E}_\mathfrak{A}(\mathcal{B}(\mathcal{H}))$?

Answer

Yes!
Elementary operators, II

Remarks

1. $\mathcal{E}_{A}(B(\mathcal{H}))$ is a subalgebra of $CB(B(\mathcal{H}))$.
2. $T \in \mathcal{E}_{A}(B(\mathcal{H})) \cap CP(B(\mathcal{H}))$ iff there are $n \in \mathbb{N}$, $c := (c_1, \ldots, c_n) \in A^n$ such that $T = M_{c,c^*}$ with $c^* := (c_1^*, \ldots, c_n^*)$.
3. $M_{a,b}^* = M_{b^*,a^*}$.
4. $\mathcal{E}_{A}(B(\mathcal{H})) \cong A \otimes \text{h} A$. ($\otimes \text{h} = $ Haagerup tensor product)

Question

Given $T \in \mathcal{E}_{A}(B(\mathcal{H}))$, can a Wittstock modulus $|T| \in CB(B(\mathcal{H}))$ be found in $\mathcal{E}_{A}(B(\mathcal{H}))$?

Answer

Yes!
Let \(T \in \mathbb{E}_A^\ell(B(H)) \). Then there are \(n \in \mathbb{N}, a, b \in A^n \) such that
\[
T = M_{a, a^*} + \cdots + M_{a^n, a_{n}^*}
\]
and
\[
\|T\|_{cb} = \|a_1 a^* + \cdots + a_n a_{n}^*\|.
\]
Then \(|T| = \frac{1}{2} M_{a, a^*} + \frac{1}{2} M_{b^*, b} \) is a Wittstock modulus for \(T \).

If \(T(id_H) = id_H \), then
\[
M_{a, a^*}(id_H) = M_{b^*, b}(id_H) = \|T\|_{cb} id_H.
\]
Example

Let $T \in E_{\ell} A(B(H))$. Then there are $n \in \mathbb{N}$, $a, b \in A$ such that $T = M_{a, b}$ and

$$
\|T\|_{cb} = \|a_1^*a + \cdots + a_n^*a_n\| = \|b_1^*b + \cdots + b_n^*b_n\|.
$$

Then $|T| := \frac{1}{2}M_{a, a^*} + \frac{1}{2}M_{b^*, b}$ is a Wittstock modulus for T.

If $T(id_H) = id_H$, then $M_{a, a^*(id_H)} = M_{b^*, b(id_H)} = \|T\|_{cb id_H}$.

Advertisements
Example

Let \(T \in \mathcal{E}_{\ell_2}(\mathcal{B}(H)) \).
Example

Let \(T \in \mathcal{E}_{\mathcal{A}}(\mathcal{B}(H)) \). Then there are
Example

Let $T \in \mathcal{E}_{\mathbb{A}}(\mathcal{B}(\mathcal{H}))$. Then there are $n \in \mathbb{N}$,
Example

Let $T \in \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))$. Then there are $n \in \mathbb{N}$, $a, b \in \mathcal{A}^n$ such that $T = M_{a, a^*} = M_{b^*, b}$ and

$$
\|T\| = \|a_1 a^* + \cdots + a_n a^*\| = \|b^* b + \cdots + b_n b^*\|.
$$

Then $|T| = \frac{1}{2} M_{a, a^*} + \frac{1}{2} M_{b^*, b}$ is a Wittstock modulus for T. If $T(id_{\mathcal{H}}) = id_{\mathcal{H}}$, then $M_{a, a^*}(id_{\mathcal{H}}) = M_{b^*, b}(id_{\mathcal{H}}) = \|T\| c_{id_{\mathcal{H}}}$.
Elementary operators, III

Example

Let $T \in \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))$. Then there are $n \in \mathbb{N}$, $a, b \in \mathcal{A}^n$ such that

$$T = M_{a,b}$$
Example

Let \(T \in \mathcal{E}_{\mathfrak{A}}(\mathcal{B}(\mathcal{H})) \). Then there are \(n \in \mathbb{N}, \ a, b \in \mathfrak{A}^n \) such that

\[
T = M_{a,b}
\]

and
Elementary operators, III

Example

Let $T \in \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))$. Then there are $n \in \mathbb{N}$, $a, b \in \mathbb{A}^n$ such that

$$T = M_{a,b}$$

and

$$\| T \|_{cb} = \| a_1a^* + \cdots a_na_n^* \| = \| b_1^*b_1 + \cdots + b_n^*b_n \|.$$
Example

Let $T \in \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))$. Then there are $n \in \mathbb{N}$, $a, b \in \mathcal{A}^n$ such that

$$T = M_{a,b}$$

and

$$\| T \|_{cb} = \| a_1 a^* + \cdots + a_n a_n^* \| = \| b_1^* b_1 + \cdots + b_n^* b_n \|.$$

Then

$$| T | := \frac{1}{2} M_{a,a^*} + \frac{1}{2} M_{b^*,b}.$$
Example

Let $T \in \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))$. Then there are $n \in \mathbb{N}$, $a, b \in \mathcal{A}^n$ such that

$$T = M_{a, b}$$

and

$$\|T\|_{cb} = \|a_1 a^* + \cdots + a_n a_n^*\| = \|b_1^* b_1 + \cdots + b_n^* b_n\|.$$

Then

$$|T| := \frac{1}{2} M_{a, a^*} + \frac{1}{2} M_{b^*, b}$$

is a Wittstock modulus for T.
Example

Let \(T \in \mathcal{E}_\mathfrak{A}(\mathcal{B}(\mathcal{H})) \). Then there are \(n \in \mathbb{N}, \ a, b \in \mathfrak{A}^n \) such that

\[
T = M_{a,b}
\]

and

\[
\| T \|_{cb} = \| a_1 a^* + \cdots a_n a_n^* \| = \| b_1^* b_1 + \cdots + b_n^* b_n \|.\]

Then

\[
| T | := \frac{1}{2} M_{a,a^*} + \frac{1}{2} M_{b^*,b}
\]

is a Wittstock modulus for \(T \). If \(T(\text{id}_{\mathcal{H}}) = \text{id}_{\mathcal{H}} \),
Example

Let \(T \in \mathcal{E}_{\mathfrak{A}}(\mathcal{B}(\mathcal{H})) \). Then there are \(n \in \mathbb{N} \), \(a, b \in \mathfrak{A}^n \) such that

\[
T = M_{a,b}
\]

and

\[
\| T \|_{cb} = \| a_1 a^* + \cdots + a_n a^*_n \| = \| b_1^* b_1 + \cdots + b_n^* b_n \|.
\]

Then

\[
| T | := \frac{1}{2} M_{a,a^*} + \frac{1}{2} M_{b^*,b}
\]

is a Wittstock modulus for \(T \). If \(T(\text{id}_{\mathcal{H}}) = \text{id}_{\mathcal{H}} \), then

\[
M_{a,a^*}(\text{id}_{\mathcal{H}}) = M_{b^*,b}(\text{id}_{\mathcal{H}}) = \| T \|_{cb} \text{id}_{\mathcal{H}}.
\]
Remark

Let A be a Banach algebra, and let E be a Banach A-bimodule. Then E^* becomes a Banach A-bimodule via

$\langle a \cdot \phi, x \rangle := \langle \phi, x \cdot a \rangle$

and

$\langle \phi \cdot a, x \rangle := \langle \phi, a \cdot x \rangle$

for $a \in A$, $x \in E$, $\phi \in E^*$.

Definition (Johnson, 1972)

A Banach algebra A is called amenable if, for every Banach A-bimodule E, every derivation $D: A \to E^*$ is inner, i.e., there is $\phi \in E^*$ such that $Dx = \text{ad} \phi x := x \cdot \phi - \phi \cdot x$ ($x \in A$).
Remark

Let A be a Banach algebra, and let E be a Banach A-bimodule. Then E^* becomes a Banach A-bimodule via \[\langle a \cdot \varphi, x \rangle := \langle \varphi, x \cdot a \rangle \] and \[\langle \varphi \cdot a, x \rangle := \langle \varphi, a \cdot x \rangle \] for $a \in A$, $x \in E$, $\varphi \in E^*$.

Definition (Johnson, 1972)

A Banach algebra A is called amenable if, for every Banach A-bimodule E, every derivation $D : A \to E^*$ is inner, i.e., there is $\varphi \in E^*$ such that $Dx = \text{ad}_\varphi x := x \cdot \varphi - \varphi \cdot x$ ($x \in A$).
Remark

Let \mathcal{A} be a Banach algebra,
Amenable Banach algebras, I

Remark

Let \mathcal{A} be a Banach algebra, and let E be a Banach \mathcal{A}-bimodule.
Remark

Let A be a Banach algebra, and let E be a Banach A-bimodule. Then E^* becomes a Banach A-bimodule.
Remark

Let \mathcal{A} be a Banach algebra, and let E be a Banach \mathcal{A}-bimodule. Then E^* becomes a Banach \mathcal{A}-bimodule via

$$\langle a \cdot \phi, x \rangle := \langle \phi, x \cdot a \rangle \quad \text{and} \quad \langle \phi \cdot a, x \rangle := \langle \phi, a \cdot x \rangle$$
Remark

Let \mathcal{A} be a Banach algebra, and let E be a Banach \mathcal{A}-bimodule. Then E^* becomes a Banach \mathcal{A}-bimodule via

$$\langle a \cdot \phi, x \rangle := \langle \phi, x \cdot a \rangle \quad \text{and} \quad \langle \phi \cdot a, x \rangle := \langle \phi, a \cdot x \rangle$$

for
Remark

Let \mathcal{A} be a Banach algebra, and let E be a Banach \mathcal{A}-bimodule. Then E^* becomes a Banach \mathcal{A}-bimodule via

$$\langle a \cdot \phi, x \rangle := \langle \phi, x \cdot a \rangle \quad \text{and} \quad \langle \phi \cdot a, x \rangle := \langle \phi, a \cdot x \rangle$$

for $a \in \mathcal{A}$,
Remark

Let \mathcal{A} be a Banach algebra, and let E be a Banach \mathcal{A}-bimodule. Then E^* becomes a Banach \mathcal{A}-bimodule via

$$\langle a \cdot \phi, x \rangle := \langle \phi, x \cdot a \rangle \quad \text{and} \quad \langle \phi \cdot a, x \rangle := \langle \phi, a \cdot x \rangle$$

for $a \in \mathcal{A}$, $x \in E$,.
Amenable Banach algebras, I

Remark

Let \mathcal{A} be a Banach algebra, and let E be a Banach \mathcal{A}-bimodule. Then E^* becomes a Banach \mathcal{A}-bimodule via

$$\langle a \cdot \phi, x \rangle := \langle \phi, x \cdot a \rangle \quad \text{and} \quad \langle \phi \cdot a, x \rangle := \langle \phi, a \cdot x \rangle$$

for $a \in \mathcal{A}$, $x \in E$, $\phi \in E^*$.
Remark

Let \mathcal{A} be a Banach algebra, and let E be a Banach \mathcal{A}-bimodule. Then E^* becomes a Banach \mathcal{A}-bimodule via

$$\langle a \cdot \phi, x \rangle := \langle \phi, x \cdot a \rangle \quad \text{and} \quad \langle \phi \cdot a, x \rangle := \langle \phi, a \cdot x \rangle$$

for $a \in \mathcal{A}$, $x \in E$, $\phi \in E^*$.

Definition (Johnson, 1972)

A Banach algebra \mathcal{A} is called amenable if, for every Banach \mathcal{A}-bimodule E, every derivation $D: \mathcal{A} \to E^*$ is inner, i.e., there is $\phi \in E^*$ such that $Dx = \text{ad}_\phi x := x \cdot \phi - \phi \cdot x$ ($x \in A$).
Remark

Let \(\mathcal{A} \) be a Banach algebra, and let \(E \) be a Banach \(\mathcal{A} \)-bimodule. Then \(E^* \) becomes a Banach \(\mathcal{A} \)-bimodule via

\[
\langle a \cdot \phi, x \rangle := \langle \phi, x \cdot a \rangle \quad \text{and} \quad \langle \phi \cdot a, x \rangle := \langle \phi, a \cdot x \rangle
\]

for \(a \in \mathcal{A} \), \(x \in E \), \(\phi \in E^* \).

Definition (Johnson, 1972)

A Banach algebra \(\mathcal{A} \)
Amenable Banach algebras, I

Remark

Let \mathcal{A} be a Banach algebra, and let E be a Banach \mathcal{A}-bimodule. Then E^* becomes a Banach \mathcal{A}-bimodule via

$$\langle a \cdot \phi, x \rangle := \langle \phi, x \cdot a \rangle \quad \text{and} \quad \langle \phi \cdot a, x \rangle := \langle \phi, a \cdot x \rangle$$

for $a \in \mathcal{A}, \ x \in E, \ \phi \in E^*.$

Definition (Johnson, 1972)

A Banach algebra \mathcal{A} is called amenable
Amenable Banach algebras, I

Remark

Let \mathfrak{A} be a Banach algebra, and let E be a Banach \mathfrak{A}-bimodule. Then E^* becomes a Banach \mathfrak{A}-bimodule via

$$\langle a \cdot \phi, x \rangle := \langle \phi, x \cdot a \rangle \quad \text{and} \quad \langle \phi \cdot a, x \rangle := \langle \phi, a \cdot x \rangle$$

for $a \in \mathfrak{A}$, $x \in E$, $\phi \in E^*$.

Definition (Johnson, 1972)

A Banach algebra \mathfrak{A} is called **amenable** if,
Remark

Let \(\mathcal{A} \) be a Banach algebra, and let \(E \) be a Banach \(\mathcal{A} \)-bimodule. Then \(E^* \) becomes a Banach \(\mathcal{A} \)-bimodule via

\[
\langle a \cdot \phi, x \rangle := \langle \phi, x \cdot a \rangle \quad \text{and} \quad \langle \phi \cdot a, x \rangle := \langle \phi, a \cdot x \rangle
\]

for \(a \in \mathcal{A}, \ x \in E, \ \phi \in E^* \).

Definition (Johnson, 1972)

A Banach algebra \(\mathcal{A} \) is called **amenable** if, for every Banach \(\mathcal{A} \)-bimodule \(E \),
Remark

Let \mathcal{A} be a Banach algebra, and let E be a Banach \mathcal{A}-bimodule. Then E^* becomes a Banach \mathcal{A}-bimodule via

$$\langle a \cdot \phi, x \rangle := \langle \phi, x \cdot a \rangle \quad \text{and} \quad \langle \phi \cdot a, x \rangle := \langle \phi, a \cdot x \rangle$$

for $a \in \mathcal{A}$, $x \in E$, $\phi \in E^*$.

Definition (Johnson, 1972)

A Banach algebra \mathcal{A} is called amenable if, for every Banach \mathcal{A}-bimodule E, every derivation $D : \mathcal{A} \to E^*$
Remark

Let \mathcal{A} be a Banach algebra, and let E be a Banach \mathcal{A}-bimodule. Then E^* becomes a Banach \mathcal{A}-bimodule via

$$\langle a \cdot \phi, x \rangle := \langle \phi, x \cdot a \rangle \quad \text{and} \quad \langle \phi \cdot a, x \rangle := \langle \phi, a \cdot x \rangle$$

for $a \in \mathcal{A}, \ x \in E, \ \phi \in E^*$.

Definition (Johnson, 1972)

A Banach algebra \mathcal{A} is called \textit{amenable} if, for every Banach \mathcal{A}-bimodule E, every derivation $D : \mathcal{A} \to E^*$ is \textit{inner},
Remark

Let \mathcal{A} be a Banach algebra, and let E be a Banach \mathcal{A}-bimodule. Then E^* becomes a Banach \mathcal{A}-bimodule via

$$\langle a \cdot \phi, x \rangle := \langle \phi, x \cdot a \rangle$$

and

$$\langle \phi \cdot a, x \rangle := \langle \phi, a \cdot x \rangle$$

for $a \in \mathcal{A}$, $x \in E$, $\phi \in E^*$.

Definition (Johnson, 1972)

A Banach algebra \mathcal{A} is called amenable if, for every Banach \mathcal{A}-bimodule E, every derivation $D : \mathcal{A} \to E^*$ is inner, i.e., there is $\phi \in E^*$ such that

$$Dx = \text{ad}_\phi x := x \cdot \phi - \phi \cdot x \quad (x \in \mathcal{A}).$$
Amenable Banach algebras, II

Wittstock moduli of elementary operators and their application to generalized notions of amenability

Volker Runde

Wittstock moduli of elementary operators

Generalized notions of amenability

Paulsen’s off-diagonal technique

Conclusion

Advertisements

Amenable Banach algebras, II

Definition: A net \((d_\alpha)\) \(\alpha \in \mathbb{A} \otimes_\gamma \mathbb{A}\) is called an approximate diagonal for \(\mathbb{A}\) if \(a \cdot d_\alpha - d_\alpha \cdot a \to 0\) \((a \in \mathbb{A})\) and \(a \Delta d_\alpha \to a\) \((a \in \mathbb{A})\).
Amenable Banach algebras, II

Notation
Notation

⊗\gamma:

completed Banach space tensor product.

\Delta: the multiplication map

A ⊗ γ A \ni a ⊗ b \mapsto ab.

Definition

A net \((d_\alpha)_{\alpha} \subset A \otimes \gamma A\) is called an approximate diagonal for \(A\) if

\[a \cdot d_\alpha - d_\alpha \cdot a \to 0 (a \in A)\]

and

\[a \Delta d_\alpha \to a (a \in A)\].
Notation

⊗γ: completed Banach space tensor product.
Amenable Banach algebras, II

Notation

⊗γ: completed Banach space tensor product.

∆:
Amenable Banach algebras, II

Notation

\otimes^γ: completed Banach space tensor product.
Δ: the multiplication map $A \otimes^\gamma A \ni a \otimes b \mapsto ab$.
Amenable Banach algebras, II

Notation

\otimes^γ: completed Banach space tensor product.

Δ: the multiplication map $A \otimes^\gamma A \ni a \otimes b \mapsto ab$.

Definition
Amenable Banach algebras, II

Notation

⊗γ: completed Banach space tensor product.
∆: the multiplication map \(A ⊗ γ A \ni a ⊗ b \mapsto ab \).

Definition

A net \((d_\alpha)_{\alpha} \subset A ⊗ γ A\).
Amenable Banach algebras, II

Notation

\(\otimes^\gamma \): completed Banach space tensor product.

\(\Delta : \) the multiplication map \(A \otimes^\gamma A \ni a \otimes b \mapsto ab \).

Definition

A net \((d_\alpha)_{\alpha} \subset A \otimes^\gamma A \) is called an approximate diagonal for \(A \).
Amenable Banach algebras, II

Notation

⊗γ: completed Banach space tensor product.

Δ: the multiplication map A ⊗γ A ⊇ a ⊗ b ↦→ ab.

Definition

A net \((d_\alpha)_\alpha \subset A \otimes_\gamma A\) is called an approximate diagonal for A if

\[a \cdot d_\alpha - d_\alpha \cdot a \to 0 \quad (a \in A) \]
Amenable Banach algebras, II

Notation

\otimes^γ: completed Banach space tensor product.
Δ: the multiplication map $A \otimes^\gamma A \ni a \otimes b \mapsto ab$.

Definition

A net $(d_\alpha)_\alpha \subset A \otimes^\gamma A$ is called an approximate diagonal for A if

$$a \cdot d_\alpha - d_\alpha \cdot a \to 0 \quad (a \in A)$$

and

$$a \Delta d_\alpha \to a \quad (a \in A).$$
Amenable Banach algebras, III

Theorem (Johnson, 1972)

The following are equivalent for a Banach algebra A:

1. A is amenable;
2. A has a bounded approximate diagonal.

Theorem (Johnson, 1972)

The following are equivalent for a locally compact group G:

1. $L_1(G)$ is amenable;
2. G is amenable.
Amenable Banach algebras, III

Theorem (Johnson, 1972)

The following are equivalent for a Banach algebra A:
1. A is amenable;
2. A has a bounded approximate diagonal.

Theorem (Johnson, 1972)

The following are equivalent for a locally compact group G:
1. $L^1(G)$ is amenable;
2. G is amenable.
Theorem (Johnson, 1972)

The following are equivalent for a Banach algebra \mathcal{A}:
Theorem (Johnson, 1972)

The following are equivalent for a Banach algebra \mathcal{A}:

1. \mathcal{A} is amenable;
Theorem (Johnson, 1972)

The following are equivalent for a Banach algebra \mathbb{A}:

1. \mathbb{A} is amenable;
2. \mathbb{A} has a **bounded** approximate diagonal.
Amenable Banach algebras, III

Theorem (Johnson, 1972)

The following are equivalent for a Banach algebra \(\mathbf{A} \):

1. \(\mathbf{A} \) is amenable;
2. \(\mathbf{A} \) has a \textit{bounded} approximate diagonal.

Theorem (Johnson, 1972)

The following are equivalent for a locally compact group \(G \):

1. \(L^1(G) \) is amenable;
2. \(G \) is amenable.
Theorem (Johnson, 1972)

The following are equivalent for a Banach algebra \mathcal{A}:

1. \mathcal{A} is amenable;
2. \mathcal{A} has a \textit{bounded} approximate diagonal.

Theorem (Johnson, 1972)

The following are equivalent for a locally compact group G:
Amenable Banach algebras, III

Theorem (Johnson, 1972)

The following are equivalent for a Banach algebra \mathcal{A}:

1. \mathcal{A} is amenable;
2. \mathcal{A} has a bounded approximate diagonal.

Theorem (Johnson, 1972)

The following are equivalent for a locally compact group G:

1. $L^1(G)$ is amenable;
Amenable Banach algebras, III

Theorem (Johnson, 1972)

The following are equivalent for a Banach algebra \mathfrak{A}:

1. \mathfrak{A} is amenable;
2. \mathfrak{A} has a \textit{bounded} approximate diagonal.

Theorem (Johnson, 1972)

The following are equivalent for a locally compact group G:

1. $L^1(G)$ is amenable;
2. G is amenable.
Approximately amenable Banach algebras

Definition (Ghahramani–Loy, 2004)
A Banach algebra A is called approximately amenable if, for every Banach A-bimodule E, every derivation $D: A \to E^*$ is approximately inner, i.e., there is a net $(\phi_\alpha)_{\alpha \in \mathcal{A}} \subset E^*$ such that $Dx = \lim_{\alpha} \text{ad} \phi_\alpha x$ ($x \in A$).

Example
Let G be a finite, non-abelian group. Then $c_0 \bigoplus_{n=1}^\infty A(G^n)$ is approximately amenable, but not amenable.
Definition (Ghahramani–Loy, 2004)

A Banach algebra \(A \) is called approximately amenable if, for every Banach \(A \)-bimodule \(E \), every derivation \(D: A \to E^* \) is approximately inner, i.e., there is a net \((\phi_\alpha)_{\alpha} \subset E^*\) such that \(Dx = \lim_{\alpha} \text{ad} \phi_\alpha x \) \((x \in A)\).

Example: Let \(G \) be a finite, non-abelian group. Then \(c_0 \bigoplus_{n=1}^{\infty} A(G_n) \) is approximately amenable, but not amenable.
Approximately amenable Banach algebras

Definition (Ghahramani–Loy, 2004)

A Banach algebra \mathcal{A}

Definition (Ghahramani–Loy, 2004)

A Banach algebra \mathcal{A} is called approximately amenable if, for every Banach \mathcal{A}-bimodule E, every derivation $D: \mathcal{A} \to E^*$ is approximately inner, i.e., there is a net $(\phi_\alpha)_{\alpha \in \mathbb{A}} \subset E^*$ such that $Dx = \lim_{\alpha} \text{ad} \phi_\alpha x$ ($x \in \mathcal{A}$).

Example

Let G be a finite, non-abelian group. Then $c_0 \bigoplus_{n=1}^\infty \mathcal{A}(G^n)$ is approximately amenable, but not amenable.
Approximately amenable Banach algebras

Definition (Ghahramani–Loy, 2004)

A Banach algebra \mathcal{A} is called **approximately amenable**

A Banach algebra \mathcal{A} is called approximately amenable.
Approximately amenable Banach algebras

Definition (Ghahramani–Loy, 2004)

A Banach algebra \(\mathcal{A} \) is called **approximately amenable** if,

\[
\text{for every Banach } \mathcal{A} \text{-bimodule } E, \text{ every derivation } D: \mathcal{A} \to E^* \text{ is approximately inner,} \]

i.e., there is a net \((\phi_\alpha)_{\alpha} \subset E^* \) such that

\[
Dx = \lim_\alpha \text{ad} \phi_\alpha x \quad (x \in \mathcal{A}).
\]

Example

Let \(\mathcal{G} \) be a finite, non-abelian group. Then

\[
\ell^\infty \bigoplus_{n=1}^\infty \mathcal{A}(\mathcal{G}^n)
\]

is approximately amenable, but not amenable.
Definition (Ghahramani–Loy, 2004)

A Banach algebra \mathfrak{A} is called approximately amenable if, for every Banach \mathfrak{A}-bimodule E,
Definition (Ghahramani–Loy, 2004)

A Banach algebra \(\mathfrak{A} \) is called \textbf{approximately amenable} if, for every Banach \(\mathfrak{A} \)-bimodule \(E \), every derivation \(D: \mathfrak{A} \to E^* \)
Approximately amenable Banach algebras

Definition (Ghahramani–Loy, 2004)

A Banach algebra \mathcal{A} is called **approximately amenable** if, for every Banach \mathcal{A}-bimodule E, every derivation $D: \mathcal{A} \rightarrow E^*$ is **approximately inner**,

(Example) Let G be a finite, non-abelian group. Then $c_0^\infty \bigoplus_{n=1}^\infty A(G^n)$ is approximately amenable, but not amenable.
Definition (Ghahramani–Loy, 2004)

A Banach algebra \mathfrak{A} is called approximately amenable if, for every Banach \mathfrak{A}-bimodule E, every derivation $D: \mathfrak{A} \rightarrow E^*$ is approximately inner, i.e., there is a net $(\phi_\alpha)_\alpha \subseteq E^*$.
Definition (Ghahramani–Loy, 2004)

A Banach algebra \mathcal{A} is called **approximately amenable** if, for every Banach \mathcal{A}-bimodule E, every derivation $D: \mathcal{A} \to E^*$ is **approximately inner**, i.e., there is a net $(\phi_\alpha)_{\alpha} \subset E^*$ such that

$$Dx = \lim_{\alpha} \text{ad}_{\phi_\alpha} x \quad (x \in \mathcal{A}).$$
Approximately amenable Banach algebras

Definition (Ghahramani–Loy, 2004)

A Banach algebra \mathcal{A} is called approximately amenable if, for every Banach \mathcal{A}-bimodule E, every derivation $D: \mathcal{A} \rightarrow E^*$ is approximately inner, i.e., there is a net $(\phi_\alpha)_\alpha \subset E^*$ such that

$$Dx = \lim_{\alpha} \text{ad}_{\phi_\alpha} x \quad (x \in \mathcal{A}).$$

Example
Definition (Ghahramani–Loy, 2004)

A Banach algebra \mathfrak{A} is called approximately amenable if, for every Banach \mathfrak{A}-bimodule E, every derivation $D: \mathfrak{A} \to E^*$ is approximately inner, i.e., there is a net $(\phi_\alpha)_\alpha \subset E^*$ such that

$$Dx = \lim_{\alpha} \text{ad}_{\phi_\alpha} x \quad (x \in \mathfrak{A}).$$

Example

Let G be a finite,
Approximately amenable Banach algebras

Definition (Ghahramani–Loy, 2004)

A Banach algebra \mathfrak{A} is called approximately amenable if, for every Banach \mathfrak{A}-bimodule E, every derivation $D: \mathfrak{A} \rightarrow E^*$ is approximately inner, i.e., there is a net $(\phi_\alpha)_{\alpha} \subset E^*$ such that

$$Dx = \lim_{\alpha} \text{ad}_{\phi_\alpha} x \quad (x \in \mathfrak{A}).$$

Example

Let G be a finite, non-abelian group.
Approximately amenable Banach algebras

Definition (Ghahramani–Loy, 2004)

A Banach algebra \mathcal{A} is called **approximately amenable** if, for every Banach \mathcal{A}-bimodule E, every derivation $D: \mathcal{A} \rightarrow E^*$ is **approximately inner**, i.e., there is a net $(\phi_\alpha) \subset E^*$ such that

$$Dx = \lim_{\alpha} \text{ad}_{\phi_\alpha} x \quad (x \in \mathcal{A}).$$

Example

Let G be a finite, non-abelian group. Then

$$c_0 - \bigoplus_{n=1}^{\infty} A(G^n)$$
Definition (Ghahramani–Loy, 2004)

A Banach algebra \mathcal{A} is called approximately amenable if, for every Banach \mathcal{A}-bimodule E, every derivation $D : \mathcal{A} \to E^*$ is approximately inner, i.e., there is a net $(\phi_\alpha)_\alpha \subset E^*$ such that

$$Dx = \lim_{\alpha} \text{ad}_{\phi_\alpha} x \quad (x \in \mathcal{A}).$$

Example

Let G be a finite, non-abelian group. Then

$$\ell^0 - \bigoplus_{n=1}^{\infty} A(G^n)$$

is approximately amenable,
Approximately amenable Banach algebras

Definition (Ghahramani–Loy, 2004)

A Banach algebra \mathcal{A} is called **approximately amenable** if, for every Banach \mathcal{A}-bimodule E, every derivation $D: \mathcal{A} \to E^*$ is approximately inner, i.e., there is a net $(\phi_\alpha)_{\alpha} \subset E^*$ such that

$$Dx = \lim_{\alpha} \text{ad}\phi_\alpha x \quad (x \in \mathcal{A}).$$

Example

Let G be a finite, non-abelian group. Then

$$c_0 - \bigoplus_{n=1}^{\infty} A(G^n)$$

is approximately amenable, but not amenable.
Pseudo-amenable Banach algebras

Definition (Ghahramani–Zhang, 2007)
A Banach algebra A is called pseudo-amenable if it has an approximate diagonal (possibly unbounded).

Example ℓ^p for $p \in [1, \infty)$ and $A(F_2)$ are pseudo-amenable, but not approximately amenable.

Proposition (Ghahramani–Zhang, 2007)
The following are equivalent for a Banach algebra A with a BAI:
1. A is pseudo-amenable;
2. A is approximately amenable.
Definition (Ghahramani–Zhang, 2007)

A Banach algebra A is called pseudo-amenable if it has an approximate diagonal (possibly unbounded).

Example ℓ^p for $p \in [1, \infty)$ and $A(F_2)$ are pseudo-amenable, but not approximately amenable.

Proposition (Ghahramani–Zhang, 2007)
The following are equivalent for a Banach algebra A with a BAI:
1. A is pseudo-amenable;
2. A is approximately amenable.
Definition (Ghahramani–Zhang, 2007)

A Banach algebra A
Definition (Ghahramani–Zhang, 2007)

A Banach algebra \mathfrak{A} is called pseudo-amenable.
Definition (Ghahramani–Zhang, 2007)

A Banach algebra \mathfrak{A} is called **pseudo-amenable** if it has an approximate diagonal.
Definition (Ghahramani–Zhang, 2007)

A Banach algebra \mathfrak{A} is called pseudo-amenable if it has an approximate diagonal (possibly unbounded).
Definition (Ghahramani–Zhang, 2007)

A Banach algebra \mathcal{A} is called **pseudo-amenable** if it has an approximate diagonal (possibly unbounded).

Example

ℓ^p
Definition (Ghahramani–Zhang, 2007)

A Banach algebra \mathcal{A} is called \textbf{pseudo-amenable} if it has an approximate diagonal (possibly unbounded).

Example

ℓ^p for $p \in [1, \infty)$
Pseudo-amenable Banach algebras

Definition (Ghahramani–Zhang, 2007)

A Banach algebra \mathfrak{A} is called **pseudo-amenable** if it has an approximate diagonal (possibly unbounded).

Example

ℓ^p for $p \in [1, \infty)$ and $A(\mathbb{F}_2)$
Pseudo-amenable Banach algebras

Definition (Ghahramani–Zhang, 2007)

A Banach algebra \mathfrak{A} is called \textbf{pseudo-amenable} if it has an approximate diagonal (possibly unbounded).

Example

ℓ^p for $p \in [1, \infty)$ and $A(\mathbb{F}_2)$ are pseudo-amenable,
Definition (Ghahramani–Zhang, 2007)

A Banach algebra \mathcal{A} is called pseudo-amenable if it has an approximate diagonal (possibly unbounded).

Example

ℓ^p for $p \in [1, \infty)$ and $A(\mathbb{F}_2)$ are pseudo-amenable, but not approximately amenable.
Pseudo-amenable Banach algebras

Definition (Ghahramani–Zhang, 2007)
A Banach algebra \mathcal{A} is called pseudo-amenable if it has an approximate diagonal (possibly unbounded).

Example
ℓ^p for $p \in [1, \infty)$ and $A(\mathbb{F}_2)$ are pseudo-amenable, but not approximately amenable.

Proposition (Ghahramani–Zhang, 2007)
Pseudo-amenable Banach algebras

Definition (Ghahramani–Zhang, 2007)

A Banach algebra \mathfrak{A} is called pseudo-amenable if it has an approximate diagonal (possibly unbounded).

Example

ℓ^p for $p \in [1, \infty)$ and $A(\mathbb{F}_2)$ are pseudo-amenable, but not approximately amenable.

Proposition (Ghahramani–Zhang, 2007)

The following are equivalent for a Banach algebra \mathfrak{A}
Pseudo-amenable Banach algebras

Definition (Ghahramani–Zhang, 2007)
A Banach algebra \mathfrak{A} is called **pseudo-amenable** if it has an approximate diagonal (possibly unbounded).

Example
ℓ^p for $p \in [1, \infty)$ and $A(\mathbb{F}_2)$ are pseudo-amenable, but not approximately amenable.

Proposition (Ghahramani–Zhang, 2007)
The following are equivalent for a Banach algebra \mathfrak{A} with a BAI:

- \mathfrak{A} is pseudo-amenable;
- \mathfrak{A} is approximately amenable.
Pseudo-amenable Banach algebras

Definition (Ghahramani–Zhang, 2007)

A Banach algebra \mathcal{A} is called **pseudo-amenable** if it has an approximate diagonal (possibly unbounded).

Example

L^p for $p \in [1, \infty)$ and $A(\mathbb{F}_2)$ are pseudo-amenable, but not approximately amenable.

Proposition (Ghahramani–Zhang, 2007)

The following are equivalent for a Banach algebra \mathcal{A} **with a BAI**:

1. \mathcal{A} is pseudo-amenable;
Pseudo-amenable Banach algebras

Definition (Ghahramani–Zhang, 2007)
A Banach algebra \mathbb{A} is called pseudo-amenable if it has an approximate diagonal (possibly unbounded).

Example
ℓ^p for $p \in [1, \infty)$ and $A(\mathbb{F}_2)$ are pseudo-amenable, but not approximately amenable.

Proposition (Ghahramani–Zhang, 2007)
The following are equivalent for a Banach algebra \mathbb{A} with a BAI:

1. \mathbb{A} is pseudo-amenable;
2. \mathbb{A} is approximately amenable.
GNoA’s for group algebras

Theorem (Ghahramani–Loy, 2004; Ghahramani–Zhang, 2007)

The following are equivalent for a locally compact group G:

1. $L^1(G)$ is pseudo-amenable;
2. $L^1(G)$ is approximately amenable;
3. $L^1(G)$ is amenable;
4. G is amenable.

Idea of 1. \Rightarrow 3. for discrete G.

Let $(d_\alpha)_{\alpha} \subset \ell_1(G) \otimes \ell_1(G) \sim = \ell_1(G \times G)$ be an approximate diagonal for $\ell_1(G)$.

Then $(|d_\alpha|, \|d_\alpha\|)_{\alpha} \subset \ell_1(G \times G)$ is a bounded approximate diagonal for $\ell_1(G)$.
Theorem (Ghahramani–Loy, 2004; Ghahramani–Zhang, 2007)

The following are equivalent for a locally compact group G:

1. $L_1(G)$ is pseudo-amenable;
2. $L_1(G)$ is approximately amenable;
3. $L_1(G)$ is amenable;
4. G is amenable.

Idea of 1. \Rightarrow 3. for discrete G. Let $(d_\alpha)_{\alpha} \subset \ell_1(G) \otimes \ell_1(G) \sim = \ell_1(G \times G)$ be an approximate diagonal for $\ell_1(G)$. Then $|d_\alpha| \parallel d_\alpha \subset \ell_1(G \times G)$ is a bounded approximate diagonal for $\ell_1(G)$.
Theorem (Ghahramani–Loy, 2004; Ghahramani–Zhang, 2007)

The following are equivalent for a locally compact group G:

1. $L_1(G)$ is pseudo-amenable;
2. $L_1(G)$ is approximately amenable;
3. $L_1(G)$ is amenable;
4. G is amenable.

Idea of 1. \Rightarrow 3. for discrete G.

Let $(d_\alpha)_{\alpha} \subset L_1(G) \otimes L_1(G) \sim = L_1(G \times G)$ be an approximate diagonal for $L_1(G)$. Then $(|d_\alpha| \parallel d_\alpha)_{\alpha} \subset L_1(G \times G)$ is a bounded approximate diagonal for $L_1(G)$.
The following are equivalent for a locally compact group G:

1. $L^1(G)$ is pseudo-amenable;
The following are equivalent for a locally compact group G:

1. $L^1(G)$ is pseudo-amenable;
2. $L^1(G)$ is approximately amenable;
GNoA’s for group algebras

Theorem (Ghahramani–Loy, 2004; Ghahramani–Zhang, 2007)

The following are equivalent for a locally compact group G:

1. $L^1(G)$ is pseudo-amenable;
2. $L^1(G)$ is approximately amenable;
3. $L^1(G)$ is amenable;
Theorem (Ghahramani–Loy, 2004; Ghahramani–Zhang, 2007)

The following are equivalent for a locally compact group G:

1. $L^1(G)$ is pseudo-amenable;
2. $L^1(G)$ is approximately amenable;
3. $L^1(G)$ is amenable;
4. G is amenable.
Theorem (Ghahramani–Loy, 2004; Ghahramani–Zhang, 2007)

The following are equivalent for a locally compact group G:

1. $L^1(G)$ is pseudo-amenable;
2. $L^1(G)$ is approximately amenable;
3. $L^1(G)$ is amenable;
4. G is amenable.

Idea of 1. \implies 3. for discrete G.

Theorem (Ghahramani–Loy, 2004; Ghahramani–Zhang, 2007)

The following are equivalent for a locally compact group G:

1. $L^1(G)$ is pseudo-amenable;
2. $L^1(G)$ is approximately amenable;
3. $L^1(G)$ is amenable;
4. G is amenable.

Idea of 1. \implies 3. for discrete G.

Let $(d_\alpha)_\alpha \subset \ell^1(G) \otimes \ell^1(G) \cong \ell^1(G \times G)$ be an approximate diagonal for $\ell^1(G)$.
The following are equivalent for a locally compact group G:

1. $L^1(G)$ is pseudo-amenable;
2. $L^1(G)$ is approximately amenable;
3. $L^1(G)$ is amenable;
4. G is amenable.

Idea of 1. \implies 3. for discrete G.

Let $(d_\alpha)_\alpha \subset \ell^1(G) \otimes \ell^1(G) \cong \ell^1(G \times G)$ be an approximate diagonal for $\ell^1(G)$. Then \(\left(\frac{|d_\alpha|}{\|d_\alpha\|} \right)_\alpha \subset \ell^1(G \times G) \).
Theorem (Ghahramani–Loy, 2004; Ghahramani–Zhang, 2007)

The following are equivalent for a locally compact group G:

1. $L^1(G)$ is pseudo-amenable;
2. $L^1(G)$ is approximately amenable;
3. $L^1(G)$ is amenable;
4. G is amenable.

Idea of $1. \implies 3.$ for discrete G.

Let $(d_\alpha)_\alpha \subset \ell^1(G) \otimes \ell^1(G) \cong \ell^1(G \times G)$ be an approximate diagonal for $\ell^1(G)$. Then $\left(\frac{|d_\alpha|}{\|d_\alpha\|} \right)_\alpha \subset \ell^1(G \times G)$ is a bounded approximate diagonal for $\ell^1(G)$.

\square
Theorem (Connes, Haagerup, et al.; mid 1970s–mid 1980s)

The following are equivalent for a C*-algebra \(A \):

1. \(A \) is amenable;
2. \(A \) is nuclear;
3. \(A^{**} \) is Connes-amenable, injective, semidiscrete, has Schwartz' Property (P), is approximately finite-dimensional, . . .

Question

Does pseudo-amenability/approximate amenability of a C*-algebra entail its amenability?
GNoA’s for C^*-algebras, I

Theorem (Connes, Haagerup, et. al.; mid 1970s–mid 1980s)

The following are equivalent for a C^*-algebra A:

1. A is amenable;
2. A is nuclear;
3. A^{**} is Connes-amenable, injective, semidiscrete, has Schwartz' Property (P), is approximately finite-dimensional, ...
Theorem (Connes, Haagerup, et. al.; mid 1970s–mid 1980s)

The following are equivalent for a C^*-algebra A:

1. A is amenable;
2. A is nuclear;
3. A^{**} is Connes-amenable, injective, semidiscrete, has Schwartz' Property (P), is approximately finite-dimensional, . . .

Question

Does pseudo-amenability/approximate amenability of a C^*-algebra entail its amenability?
Theorem (Connes, Haagerup, et. al.; mid 1970s–mid 1980s)

The following are equivalent for a C^*-algebra \mathcal{A}:

1. \mathcal{A} is amenable;
The following are equivalent for a C^*-algebra \mathcal{A}:

1. \mathcal{A} is amenable;
2. \mathcal{A} is nuclear;
Theorem (Connes, Haagerup, et. al.; mid 1970s–mid 1980s)

The following are equivalent for a C^*-algebra \mathfrak{A}:

1. \mathfrak{A} is amenable;
2. \mathfrak{A} is nuclear;
3. \mathfrak{A}^{**} is Connes-amenable,
Theorem (Connes, Haagerup, et. al.; mid 1970s–mid 1980s)

The following are equivalent for a C^*-algebra \mathcal{A}:

1. \mathcal{A} is amenable;
2. \mathcal{A} is nuclear;
3. \mathcal{A}^{**} is Connes-amenable, injective,
The following are equivalent for a C^*-algebra A:

1. A is amenable;
2. A is nuclear;
3. A^{**} is Connes-amenable, injective, semidiscrete,
Theorem (Connes, Haagerup, et. al.; mid 1970s–mid 1980s)

The following are equivalent for a C^*-algebra \mathcal{A}:

1. \mathcal{A} is amenable;
2. \mathcal{A} is nuclear;
3. \mathcal{A}^{**} is Connes-amenable, injective, semidiscrete, has Schwartz’ Property (P),
The following are equivalent for a C^*-algebra \mathcal{A}:

1. \mathcal{A} is amenable;
2. \mathcal{A} is nuclear;
3. \mathcal{A}^{**} is Connes-amenable, injective, semidiscrete, has Schwartz’ Property (P), is approximately finite-dimensional,
Theorem (Connes, Haagerup, et. al.; mid 1970s–mid 1980s)

The following are equivalent for a C^*-algebra \mathfrak{A}:

1. \mathfrak{A} is amenable;
2. \mathfrak{A} is nuclear;
3. \mathfrak{A}^{**} is Connes-amenable, injective, semidiscrete, has Schwartz’ Property (P), is approximately finite-dimensional, . . .
Theorem (Connes, Haagerup, et. al.; mid 1970s–mid 1980s)

The following are equivalent for a C^*-algebra \mathcal{A}:

1. \mathcal{A} is amenable;
2. \mathcal{A} is nuclear;
3. \mathcal{A}^{**} is Connes-amenable, injective, semidiscrete, has Schwartz’ Property (P), is approximately finite-dimensional, ...
Theorem (Connes, Haagerup, et. al.; mid 1970s–mid 1980s)

The following are equivalent for a C^*-algebra \mathfrak{A}:

1. \mathfrak{A} is amenable;
2. \mathfrak{A} is nuclear;
3. \mathfrak{A}^{**} is Connes-amenable, injective, semidiscrete, has Schwartz’ Property (P), is approximately finite-dimensional, . . .

Question

Does pseudo-amenability/approximate amenability of a C^*-algebra
GNoA’s for C^*-algebras, I

Theorem (Connes, Haagerup, et. al.; mid 1970s–mid 1980s)

The following are equivalent for a C^*-algebra \mathcal{A}:

1. \mathcal{A} is amenable;
2. \mathcal{A} is nuclear;
3. \mathcal{A}^{**} is Connes-amenable, injective, semidiscrete, has Schwartz’ Property (P), is approximately finite-dimensional, . . .

Question

Does pseudo-amenity/approximate amenability of a C^*-algebra entail its amenability?
GNoA’s for C^*-algebras, II

Theorem (Ozawa, 2004)

The von Neumann algebras $B(\ell^2)$ and $\ell^\infty \bigoplus_{n=1}^\infty B(\ell^2_n)$ are not pseudo-amenable.

Observation

Let $id_H \in A \subset B(H)$ be a pseudo-amenable C^*-algebra. Then there is a net $(T_\alpha)_{\alpha \in E}$ such that $T_\alpha(id_H) = id_H$ for all α and $u \cdot T_\alpha \cdot u^* - T_\alpha \to 0$ ($u \in U(A)$) ($U(A)$ = unitaries in A).
Theorem (Ozawa, 2004)

The von Neumann algebras $B(\ell_2)$ and $\ell_\infty\bigoplus_{n=1}^\infty B(\ell_2^n)$ are not pseudo-amenable.

Observation

Let $\text{id}_H \in A \subset B(H)$ be a pseudo-amenable C^*-algebra. Then there is a net $\left(T_\alpha \right)_{\alpha \in E}$ such that $T_\alpha(\text{id}_H) = \text{id}_H$ for all α and $u \cdot T_\alpha \cdot u^* - T_\alpha \to 0$ ($u \in U(A)$) ($U(A) = \text{unitaries in } A$).
Theorem (Ozawa, 2004)

The von Neumann algebras
Theorem (Ozawa, 2004)

The von Neumann algebras

\[B(\ell^2) \quad \text{and} \quad \ell^\infty \bigoplus_{n=1}^{\infty} B(\ell^2_n) \]
The von Neumann algebras

\[\mathcal{B}(\ell^2) \quad \text{and} \quad \ell^\infty \bigoplus_{n=1}^{\infty} \mathcal{B}(\ell^2_n) \]

are not pseudo-amenable.
Theorem (Ozawa, 2004)

The von Neumann algebras

\[\mathcal{B}(\ell^2) \quad \text{and} \quad \ell^\infty - \bigoplus_{n=1}^{\infty} \mathcal{B}(\ell^2_n) \]

are not pseudo-amenable.

Observation
GNoA’s for C^*-algebras, II

Theorem (Ozawa, 2004)

The von Neumann algebras

$$\mathcal{B}(\ell^2) \quad \text{and} \quad \ell^\infty - \bigoplus_{n=1}^\infty \mathcal{B}(\ell^2_n)$$

are not pseudo-amenable.

Observation

Let $\text{id}_H \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a pseudo-amenable C^*-algebra.
The von Neumann algebras

\[\mathcal{B}(\ell^2) \quad \text{and} \quad \ell^\infty - \bigoplus_{n=1}^{\infty} \mathcal{B}(\ell^2_n) \]

are not pseudo-amenable.

Observation

Let \(\text{id}_\mathcal{H} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H}) \) be a pseudo-amenable \(C^* \)-algebra. Then there is a net \((T_\alpha)_{\alpha} \subset \mathcal{E}_\mathcal{A}(\mathcal{B}(\mathcal{H})) \)
GNoA’s for C^*-algebras, II

Theorem (Ozawa, 2004)

The von Neumann algebras

$$B(ℓ^2) \quad \text{and} \quad ℓ^∞ \bigoplus_{n=1}^∞ B(ℓ^{2}_n)$$

are not pseudo-amenable.

Observation

Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subseteq B(\mathcal{H})$ be a pseudo-amenable C^*-algebra. Then there is a net $(T_\alpha)_\alpha \subseteq \mathcal{E}_\mathcal{A}(B(\mathcal{H}))$ such that $T_\alpha(\text{id}_{\mathcal{H}}) = \text{id}_{\mathcal{H}}$ for all α.

Advertisements
The von Neumann algebras

$$\mathcal{B}(\ell^2) \quad \text{and} \quad \ell^\infty \bigoplus_{n=1}^{\infty} \mathcal{B}(\ell^2_n)$$

are not pseudo-amenable.

Observation

Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a pseudo-amenable C^*-algebra. Then there is a net $(T_\alpha)_{\alpha} \subset \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))$ such that $T_\alpha(\text{id}_{\mathcal{H}}) = \text{id}_{\mathcal{H}}$ for all α and

$$u \cdot T_\alpha \cdot u^* - T_\alpha \to 0 \quad (u \in \mathcal{U}(\mathcal{A}))$$
Theorem (Ozawa, 2004)

The von Neumann algebras

\[\mathcal{B}(\ell^2) \quad \text{and} \quad \ell^\infty - \bigoplus_{n=1}^{\infty} \mathcal{B}(\ell^2_n) \]

are not pseudo-amenable.

Observation

Let \(\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H}) \) be a pseudo-amenable \(C^* \)-algebra. Then there is a net \((T_\alpha)_\alpha \subset \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H})) \) such that \(T_\alpha(\text{id}_{\mathcal{H}}) = \text{id}_{\mathcal{H}} \) for all \(\alpha \) and

\[u \cdot T_\alpha \cdot u^* - T_\alpha \to 0 \quad (u \in \mathcal{U}(\mathcal{A})) \]

\((\mathcal{U}(\mathcal{A}) = \text{unitaries in } \mathcal{A}) \).
Complete boundedness and complete positivity, I
Theorem (Paulsen, 1982)

Let A be a unital C^{*}-algebra, and let $T \in \text{CB}(A, B(H))$. Then there are $S_1, S_2 \in \text{CP}(A, B(H))$ with $S_1(e_A) = S_2(e_A) = \|T\|_{cb} \text{id}_H$ such that

$$\begin{bmatrix} S_1 & T \\ T^* & S_2 \end{bmatrix} : M_2(A) \rightarrow M_2(B(H)) \cong B(H \oplus H),$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} S_1(a) & T(b) \\ T^*(c) & S_2(d) \end{bmatrix}$$

is completely positive.
Theorem (Paulsen, 1982)

Let \mathcal{A} be a unital C^*-algebra,
Theorem (Paulsen, 1982)

Let A be a unital C^*-algebra, and let $T \in CB(A, B(H))$. Then there are $S_1, S_2 \in CP(A, B(H))$ with $S_1(e_A) = S_2(e_A) = \|T\|_{cb}$ such that

$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} S_1(a)T(b)T^*(c)S_2(d) \end{pmatrix}$

is completely positive.
Theorem (Paulsen, 1982)

Let \mathcal{A} be a unital C*-algebra, and let $T \in CB(\mathcal{A}, \mathcal{B}(\mathcal{H}))$. Then there are $S_1, S_2 \in CP(\mathcal{A}, \mathcal{B}(\mathcal{H}))$
Theorem (Paulsen, 1982)

Let \mathcal{A} be a unital C^*-algebra, and let $T \in CB(\mathcal{A}, \mathcal{B}(\mathcal{H}))$. Then there are $S_1, S_2 \in CP(\mathcal{A}, \mathcal{B}(\mathcal{H}))$ with

$$S_1(e_{\mathcal{A}}) = S_2(e_{\mathcal{A}}) = \|T\|_{cb} id_{\mathcal{H}}$$
Theorem (Paulsen, 1982)

Let \mathcal{A} be a unital C^*-algebra, and let $T \in CB(\mathcal{A}, B(\mathcal{H}))$. Then there are $S_1, S_2 \in CP(\mathcal{A}, B(\mathcal{H}))$ with

$$S_1(e_{\mathcal{A}}) = S_2(e_{\mathcal{A}}) = \|T\|_{cb} \text{id}_{\mathcal{H}}$$

such that

$$\begin{bmatrix} S_1 & T \\ T^* & S_2 \end{bmatrix} : M_2(\mathcal{A}) \hookrightarrow M_2(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H} \oplus \mathcal{H}),$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} S_1(a) & T(b) \\ T^*(c) & S_2(d) \end{bmatrix}$$
Theorem (Paulsen, 1982)

Let \mathcal{A} be a unital C^*-algebra, and let $T \in CB(\mathcal{A}, B(\mathcal{H}))$. Then there are $S_1, S_2 \in CP(\mathcal{A}, B(\mathcal{H}))$ with

$$S_1(e_{\mathcal{A}}) = S_2(e_{\mathcal{A}}) = \|T\|_{cb} \mathbf{id}_{\mathcal{H}}$$

such that

$$\begin{bmatrix} S_1 & T \\ T^* & S_2 \end{bmatrix} : M_2(\mathcal{A}) \mapsto M_2(B(\mathcal{H})) \cong B(\mathcal{H} \oplus \mathcal{H}),$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} S_1(a) & T(b) \\ T^*(c) & S_2(d) \end{bmatrix}$$

is completely positive.
Complete boundedness and complete positivity, II
Remark

\[\|T\|_{cb} = \inf \left\{ \max \{\|S_1\|_{cb}, \|S_2\|_{cb}\} \right\} \]

where the inf is taken over all \(S_1, S_2 \in \text{CP}(A, B(H)) \) such that

\[\begin{bmatrix} S_1 & 0 \\ 0 & S_2 \end{bmatrix} \pm \begin{bmatrix} 0 & T \\ T^* & 0 \end{bmatrix} \in \text{CP}(A, B(H)) \]

Question: How do we get our hand on \(S_1, S_2 \)?
Remark

Note that

\[\| T \|_{cb} = \inf \left\{ \max \{ \| S_1 \|_{cb}, \| S_2 \|_{cb} \} \right\} \]
Remark

Note that

$$\| T \|_{cb} = \inf \{ \max \{ \| S_1 \|_{cb}, \| S_2 \|_{cb} \} \}$$

where the inf is taken
Remark

Note that

\[\| T \|_{cb} = \inf \{ \max \{ \| S_1 \|_{cb}, \| S_2 \|_{cb} \} \} \]

where the inf is taken over all \(S_1, S_2 \in \mathcal{CP}(\mathcal{A}, \mathcal{B}(\mathcal{H})) \)
Remark

Note that

\[\| T \|_{cb} = \inf \{ \max \{ \| S_1 \|_{cb}, \| S_2 \|_{cb} \} \} \]

where the inf is taken over all \(S_1, S_2 \in CP(\mathcal{A}, B(\mathcal{H})) \) such that

\[
\begin{bmatrix}
S_1 & 0 \\
0 & S_2
\end{bmatrix} \pm \begin{bmatrix}
0 & T \\
T^* & 0
\end{bmatrix} \in CP(\mathcal{A}, B(\mathcal{H}))
\]
Remark

Note that

\[\| T \|_{cb} = \inf \left\{ \max \{ \| S_1 \|_{cb}, \| S_2 \|_{cb} \} \right\} \]

where the inf is taken over all \(S_1, S_2 \in \mathcal{CP}(\mathcal{A}, \mathcal{B}(\mathcal{H})) \) such that

\[
\begin{bmatrix}
S_1 & 0 \\
0 & S_2
\end{bmatrix}
\pm
\begin{bmatrix}
0 & T \\
T^* & 0
\end{bmatrix}
\in \mathcal{CP}(\mathcal{A}, \mathcal{B}(\mathcal{H}))
\]

Question
Remark

Note that

\[\| T \|_{cb} = \inf \left\{ \max \{ \| S_1 \|_{cb}, \| S_2 \|_{cb} \} \right\} \]

where the inf is taken over all \(S_1, S_2 \in \mathcal{CP}(\mathcal{A}, \mathcal{B}(\mathcal{H})) \) such that

\[
\begin{bmatrix}
S_1 & 0 \\
0 & S_2
\end{bmatrix} \pm \begin{bmatrix}
0 & T \\
T^* & 0
\end{bmatrix} \in \mathcal{CP}(\mathcal{A}, \mathcal{B}(\mathcal{H}))
\]

Question

How do we get our hand on \(S_1, S_2 \)?
Elementary operators, IV

Example

Let $id_{H} \in A \subset B(H)$ be a C^*-algebra, and let $T \in E_{\ell} A(B(H))$ with $T(id_{H}) = 1$. Choose $n \in \mathbb{N}$, $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in A^n$ such that $T = M_{a,b}$ and $\|T\|_{cb} = \|a_1 a_1^* + \cdots + a_n a_n^*\| = \|b_n^* b_n\|$. The elementary operator $M_2(B(H)) \to M_2(B(H))$, $\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \mapsto \sum_{j=1}^{n} \begin{pmatrix} a_j 0 \\ 0 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \begin{pmatrix} a_j^* 0 \\ 0 \end{pmatrix}$ is completely positive.
Elementary operators, IV

Example

Let $id_H \in A \subseteq B(H)$ be a C^*-algebra, and let $T \in E_{\ell^1}(B(H))$ with $T(id_H) = 1$. Choose $n \in \mathbb{N}, a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in A^n$ such that $T = M_{a,b}$ and $\|T\|_{cb} = \|a_1^*a_1 + \cdots + a_n^*a_n\| = \|b_1^*b_1 + \cdots + b_n^*b_n\|$. The elementary operator $M_2(B(H)) \to M_2(B(H))$,

\[
\begin{bmatrix}
 x_{11} & x_{12} \\
 x_{21} & x_{22}
\end{bmatrix} \mapsto
\sum_{j=1}^n \begin{bmatrix}
 a_j^*0 & 0 \\
 0 & b_j^*j
\end{bmatrix} \begin{bmatrix}
 x_{11} & x_{12} \\
 x_{21} & x_{22}
\end{bmatrix} \begin{bmatrix}
 a_j0 & 0 \\
 0 & b_jj
\end{bmatrix}
\]

is completely positive.
Example

Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset B(\mathcal{H})$ be a C^*-algebra,
Example

Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a C^*-algebra, and let $T \in \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))$ with $T(\text{id}_{\mathcal{H}}) = 1$.
Example

Let $\text{id}_\mathcal{H} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a C^*-algebra, and let $T \in \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))$ with $T(\text{id}_\mathcal{H}) = 1$. Choose $n \in \mathbb{N}$,
Example

Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a C^*-algebra, and let $T \in \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))$ with $T(\text{id}_{\mathcal{H}}) = 1$. Choose $n \in \mathbb{N}$, $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in \mathcal{A}^n$.
Example

Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset B(\mathcal{H})$ be a C^*-algebra, and let $T \in \mathcal{E}_\mathcal{A}(B(\mathcal{H}))$ with $T(\text{id}_{\mathcal{H}}) = 1$. Choose $n \in \mathbb{N}$, $a = (a_1, \ldots, a_n)$, $b = (b_1, \ldots, b_n) \in \mathcal{A}^n$ such that $T = M_{a,b}$.
Elementary operators, IV

Example

Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a C^*-algebra, and let $T \in \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))$ with $T(\text{id}_{\mathcal{H}}) = 1$. Choose $n \in \mathbb{N}$, $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in \mathcal{A}^n$ such that $T = M_{a,b}$ and

$$
\| T \|_{cb} = \| a_1 a_1^* + \cdots + a_n a_n^* \| = \| b_1^* b_1 + \cdots + b_n^* b_n \|.
$$
Example

Let \(\text{id}_\mathcal{H} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H}) \) be a \(C^* \)-algebra, and let \(T \in \mathcal{E}_\mathcal{A}(\mathcal{B}(\mathcal{H})) \) with \(T(\text{id}_\mathcal{H}) = 1 \). Choose \(n \in \mathbb{N} \), \(a = (a_1, \ldots, a_n) \), \(b = (b_1, \ldots, b_n) \) \(\in \mathcal{A}^n \) such that \(T = M_{a,b} \) and

\[
\| T \|_{cb} = \| a_1 a_1^* + \cdots + a_n a_n^* \| = \| b_1^* b_1 + \cdots + b_n^* b_n \|.
\]

The elementary operator

\[
M_2(\mathcal{B}(\mathcal{H})) \to M_2(\mathcal{B}(\mathcal{H})),
\]

\[
\begin{bmatrix}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{bmatrix} \mapsto \sum_{j=1}^{n} \begin{bmatrix}
a_j & 0 \\
0 & b_j^*
\end{bmatrix}
\begin{bmatrix}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{bmatrix}
\begin{bmatrix}
a_j^* & 0 \\
0 & b_j
\end{bmatrix}
\]
Example

Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a C^*-algebra, and let $T \in \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))$ with $T(\text{id}_{\mathcal{H}}) = 1$. Choose $n \in \mathbb{N}$, $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in \mathcal{A}^n$ such that $T = M_{a,b}$ and

$$\| T \|_{cb} = \| a_1 a_1^* + \cdots + a_n a_n^* \| = \| b_1^* b_1 + \cdots + b_n^* b_n \|.$$

The elementary operator

$$M_2(\mathcal{B}(\mathcal{H})) \to M_2(\mathcal{B}(\mathcal{H})),$$

$$\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \mapsto \sum_{j=1}^{n} \begin{bmatrix} a_j & 0 \\ 0 & b_j^* \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \begin{bmatrix} a_j^* \\ 0 \end{bmatrix}$$

is completely positive.
Elementary operators, V

Example (continued)

\[
\begin{bmatrix}
a_0 & 0 \\
0 & b^* \\
\end{bmatrix}
\begin{bmatrix}
x_{11} \\
x_{12} \\
\end{bmatrix}
\begin{bmatrix}
a^*_0 & 0 \\
0 & b \\
\end{bmatrix} =
\begin{bmatrix}
a x_{11} \\
a^* x_{12} \\
b x_{21} \\
b^* x_{22} \\
\end{bmatrix}.
\]

So \(S_1 = M_{a, a^*} \) and \(S_2 = M_{b^*, b} \) will do.
Example (continued)

Now

\[
\begin{bmatrix}
0 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 0
\end{bmatrix}
\]

will do.
Example (continued)

Now

$$\begin{bmatrix} a & 0 \\ 0 & b^* \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \begin{bmatrix} a^* & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} ax_{11}a^* & ax_{12}b \\ b^*x_{21}a^* & b^*x_{22}b \end{bmatrix}.$$
Elementary operators, V

Example (continued)

Now

\[
\begin{bmatrix}
 a & 0 \\
 0 & b^*
\end{bmatrix}
\begin{bmatrix}
 x_{11} & x_{12} \\
 x_{21} & x_{22}
\end{bmatrix}
\begin{bmatrix}
 a^* & 0 \\
 0 & b
\end{bmatrix}
= \begin{bmatrix}
 ax_{11}a^* & ax_{12}b \\
 b^*x_{21}a^* & b^*x_{22}b
\end{bmatrix}.
\]

So
Now
\[
\begin{bmatrix}
 a & 0 \\
 0 & b^*
\end{bmatrix}
\begin{bmatrix}
 x_{11} & x_{12} \\
 x_{21} & x_{22}
\end{bmatrix}
\begin{bmatrix}
 a^* & 0 \\
 0 & b
\end{bmatrix} = \begin{bmatrix}
 ax_{11}a^* & ax_{12}b \\
 b^*x_{21}a^* & b^*x_{22}b
\end{bmatrix}.
\]

So
\[S_1 = M_{a,a^*} \quad \text{and} \quad S_2 = M_{b^*,b}\]
Example (continued)

Now

\[
\begin{bmatrix}
 a & 0 \\
 0 & b^* \\
\end{bmatrix}
\begin{bmatrix}
 x_{11} & x_{12} \\
 x_{21} & x_{22} \\
\end{bmatrix}
\begin{bmatrix}
 a^* & 0 \\
 0 & b \\
\end{bmatrix}
=
\begin{bmatrix}
 ax_{11}a^* & ax_{12}b \\
 b^*x_{21}a^* & b^*x_{22}b \\
\end{bmatrix}.
\]

So

\[S_1 = M_{a,a^*} \quad \text{and} \quad S_2 = M_{b^*,b}\]

will do.
Elementary operators, VI
Consequence
Consequence

Let $n \in \mathcal{A}$
Consequence

Let \(n \in \mathcal{A} \) and \(a, b, c, d \in \mathcal{A}^n \) suitable.
Consequence

Let $n \in \mathcal{A}$ and $a, b, c, d \in \mathcal{A}^n$ suitable. Then

$$\|\begin{bmatrix} M^*_{a,a} & 0 \\ 0 & M^*_{b^*,b} \end{bmatrix} - \begin{bmatrix} M^*_{c,c} & 0 \\ 0 & M^*_{d^*,d} \end{bmatrix}\|_{cb} \leq \|M_{a,b} - M_{c,d}\|_{cb}$$
Consequence

Let \(n \in \mathcal{A} \) and \(a, b, c, \varphi \in \mathcal{A}^n \) suitable. Then

\[
\left\| \begin{bmatrix} M_{a,a}^* & 0 \\ 0 & M_{b^*,b}^* \end{bmatrix} - \begin{bmatrix} M_{c,c}^* & 0 \\ 0 & M_{\varphi^*,\varphi}^* \end{bmatrix} \right\|_{cb} \leq \| M_{a,b} - M_{c,\varphi} \|_{cb}
\]

and thus

\[
\left\| \frac{1}{2} (M_{a,a}^* + M_{b^*,b}^*) - \frac{1}{2} (M_{c,c}^* + M_{\varphi^*,\varphi}^*) \right\|_{cb} \leq \| M_{a,b} - M_{c,\varphi} \|_{cb}
\]
Let $id_H \in A \subset B(H)$ be a C^*-algebra. For $c = (c_1, \ldots, c_n) \in A$ and $a \in A$, set $a \cdot c := (ac_1, \ldots, ac_n)$ and $c \cdot a := (c_1a, \ldots, c_na)$.

Let $T = M_{a, b} \in E\ell A(B(H))$, and note that $a \cdot T \cdot b = M_{a \cdot a, b \cdot b}(a, b) \in A$.

Suppose that $T(id_H) = id_H$, and that $a, b \in A$ are suitable for T. Set $|T| := \frac{1}{2}(M_{a, a^*} + M_{b, b^*})$.

Let $u \in U(A)$. Then $u \cdot a, b \cdot u^*$ are suitable for $u \cdot T \cdot u^*$ with $|u \cdot T \cdot u^*| = u \cdot |T| \cdot u^*$, so that

$$\|u \cdot |T| \cdot u^* - |T|\|_{cb} \leq \|u \cdot T \cdot u^* - T\|_{cb}.$$
Let $\text{id}_\mathcal{H} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a C^*-algebra.
Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset B(\mathcal{H})$ be a C^*-algebra. For $c = (c_1, \ldots, c_n) \in \mathcal{A}$
Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset B(\mathcal{H})$ be a C^*-algebra. For $c = (c_1, \ldots, c_n) \in \mathcal{A}$ and $a \in \mathcal{A}$,
Let $\text{id}_\mathcal{H} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a C^*-algebra. For $c = (c_1, \ldots, c_n) \in \mathcal{A}$ and $a \in \mathcal{A}$, set

$$a \cdot c := (ac_1, \ldots, ac_n) \quad \text{and} \quad c \cdot a := (c_1a, \ldots, c_na).$$
Let $\text{id}_H \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a C^*-algebra. For $c = (c_1, \ldots, c_n) \in \mathcal{A}$ and $a \in \mathcal{A}$, set
\[a \cdot c := (ac_1, \ldots, ac_n) \quad \text{and} \quad c \cdot a := (c_1a, \ldots, c_na). \]
Let $T = M_{a,b} \in \mathcal{E}_\mathcal{A}(\mathcal{B}(\mathcal{H}))$,
Let \(\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H}) \) be a C*-algebra. For \(c = (c_1, \ldots, c_n) \in \mathcal{A} \) and \(a \in \mathcal{A} \), set
\[
a \cdot c := (ac_1, \ldots, ac_n) \quad \text{and} \quad c \cdot a := (c_1a, \ldots, c_na).
\]
Let \(T = M_{a,b} \in \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H})) \), and note that
Let $\text{id}_\mathcal{H} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a C^*-algebra. For $c = (c_1, \ldots, c_n) \in \mathcal{A}$ and $a \in \mathcal{A}$, set

$$a \cdot c := (ac_1, \ldots, ac_n) \quad \text{and} \quad c \cdot a := (c_1a, \ldots, c_na).$$

Let $T = M_{a,b} \in \mathcal{E}_\mathcal{A}(\mathcal{B}(\mathcal{H}))$, and note that

$$a \cdot T \cdot b = M_{a \cdot a, b \cdot b} \quad (a, b \in \mathcal{A}).$$
Let \(\text{id}_\mathcal{H} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H}) \) be a \(C^* \)-algebra. For \(c = (c_1, \ldots, c_n) \in \mathcal{A} \) and \(a \in \mathcal{A} \), set
\[
a \cdot c := (ac_1, \ldots, ac_n) \quad \text{and} \quad c \cdot a := (c_1a, \ldots, c_na).
\]

Let \(T = M_{a,b} \in \mathcal{E}_\mathcal{A}(\mathcal{B}(\mathcal{H})) \), and note that
\[
a \cdot T \cdot b = M_{a \cdot a, b \cdot b} \quad (a, b \in \mathcal{A}).
\]

Suppose that \(T(\text{id}_\mathcal{H}) = \text{id}_\mathcal{H} \).
GNoA's for C*-algebras, III

Let \(\text{id}_{\mathcal{H}} \in \mathcal{B} \subset \mathcal{B} (\mathcal{H}) \) be a C*-algebra. For \(\mathbf{c} = (c_1, \ldots, c_n) \in \mathcal{A} \) and \(a \in \mathcal{A} \), set

\[
a \cdot \mathbf{c} := (ac_1, \ldots, ac_n) \quad \text{and} \quad \mathbf{c} \cdot a := (c_1a, \ldots, c_na).
\]

Let \(T = M_{a,b} \in \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H})) \), and note that

\[
a \cdot T \cdot b = M_{a \cdot a,b \cdot b} \quad (a, b \in \mathcal{A}).
\]

Suppose that \(T(\text{id}_{\mathcal{H}}) = \text{id}_{\mathcal{H}} \), and that \(a, b \in \mathcal{A}^n \) are suitable for \(T \).
Let \(\text{id}_{\mathcal{H}} \in \mathcal{A} \subseteq \mathcal{B}(\mathcal{H}) \) be a \(C^* \)-algebra. For \(c = (c_1, \ldots, c_n) \in \mathcal{A} \) and \(a \in \mathcal{A} \), set
\[
a \cdot c := (ac_1, \ldots, ac_n) \quad \text{and} \quad c \cdot a := (c_1a, \ldots, c_na).
\]

Let \(T = M_{a,b} \in \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H})) \), and note that
\[
a \cdot T \cdot b = M_{a\cdot a, b\cdot b} \quad (a, b \in \mathcal{A}).
\]

Supppose that \(T(\text{id}_{\mathcal{H}}) = \text{id}_{\mathcal{H}} \), and that \(a, b \in \mathcal{A}^n \) are suitable for \(T \). Set
\[
|T| := \frac{1}{2}(M_{a,a^*} + M_{b^*,b^*}).
\]
Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a C^*-algebra. For $c = (c_1, \ldots, c_n) \in \mathcal{A}$ and $a \in \mathcal{A}$, set

$$a \cdot c := (ac_1, \ldots, ac_n) \quad \text{and} \quad c \cdot a := (c_1a, \ldots, c_n a).$$

Let $T = M_{a,b} \in \mathcal{E}_\mathcal{A}(\mathcal{B}(\mathcal{H}))$, and note that

$$a \cdot T \cdot b = M_{a \cdot a, b \cdot b} \quad (a, b \in \mathcal{A}).$$

Supppose that $T(\text{id}_{\mathcal{H}}) = \text{id}_{\mathcal{H}}$, and that $a, b \in \mathcal{A}^n$ are suitable for T. Set

$$|T| := \frac{1}{2}(M_{a,a^*} + M_{b^*,b}).$$

Let $u \in \mathcal{U}(\mathcal{A})$.

\[\text{GNoA's for } C^*-\text{algebras, III} \]
Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a C^*-algebra. For $c = (c_1, \ldots, c_n) \in \mathcal{A}$ and $a \in \mathcal{A}$, set

$$a \cdot c := (ac_1, \ldots, ac_n) \quad \text{and} \quad c \cdot a := (c_1 a, \ldots, c_n a).$$

Let $T = M_{a,b} \in \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))$, and note that

$$a \cdot T \cdot b = M_{a \cdot a, b \cdot b} \quad (a, b \in \mathcal{A}).$$

Suppose that $T(\text{id}_{\mathcal{H}}) = \text{id}_{\mathcal{H}}$, and that $a, b \in \mathcal{A}^n$ are suitable for T. Set

$$|T| := \frac{1}{2}(M_{a,a^*} + M_{b^*,b}).$$

Let $u \in \mathcal{U}(\mathcal{A})$. Then $u \cdot a, b \cdot u^*$
Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a C^*-algebra. For $c = (c_1, \ldots, c_n) \in \mathcal{A}$ and $a \in \mathcal{A}$, set

$$a \cdot c := (ac_1, \ldots, ac_n) \quad \text{and} \quad c \cdot a := (c_1 a, \ldots, c_n a).$$

Let $T = M_{a,b} \in \mathcal{E}\ell_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))$, and note that

$$a \cdot T \cdot b = M_{a \cdot a, b \cdot b} \quad (a, b \in \mathcal{A}).$$

Suppose that $T(\text{id}_{\mathcal{H}}) = \text{id}_{\mathcal{H}}$, and that $a, b \in \mathcal{A}^n$ are suitable for T. Set

$$|T| := \frac{1}{2}(M_{a,a^*} + M_{b^*, b}).$$

Let $u \in \mathcal{U}(\mathcal{A})$. Then $u \cdot a, b \cdot u^*$ are suitable for $u \cdot T \cdot u^*$.
Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a C^*-algebra. For $c = (c_1, \ldots, c_n) \in \mathcal{A}$ and $a \in \mathcal{A}$, set
\[
a \cdot c := (ac_1, \ldots, ac_n) \quad \text{and} \quad c \cdot a := (c_1a, \ldots, c_na).
\]

Let $T = M_{a,b} \in \ell_2(\mathcal{B}(\mathcal{H}))$, and note that
\[
a \cdot T \cdot b = M_{a \cdot a,b \cdot b} \quad (a, b \in \mathcal{A}).
\]

Suppose that $T(\text{id}_{\mathcal{H}}) = \text{id}_{\mathcal{H}}$, and that $a, b \in \mathcal{A}^n$ are suitable for T. Set
\[
|T| := \frac{1}{2}(M_{a,a^*} + M_{b^*,b}).
\]

Let $u \in \mathcal{U}(\mathcal{A})$. Then $u \cdot a, b \cdot u^*$ are suitable for $u \cdot T \cdot u^*$ with
\[
|u \cdot T \cdot u^*| = u \cdot |T| \cdot u^*.
\]
Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a C^*-algebra. For $c = (c_1, \ldots, c_n) \in \mathcal{A}$ and $a \in \mathcal{A}$, set

$$a \cdot c := (ac_1, \ldots, ac_n) \quad \text{and} \quad c \cdot a := (c_1a, \ldots, c_na).$$

Let $T = M_{a,b} \in \mathcal{E}_\mathcal{A}(\mathcal{B}(\mathcal{H}))$, and note that

$$a \cdot T \cdot b = M_{a \cdot a,b \cdot b} \quad (a, b \in \mathcal{A}).$$

Supppose that $T(\text{id}_{\mathcal{H}}) = \text{id}_{\mathcal{H}}$, and that $a, b \in \mathcal{A}^n$ are suitable for T. Set

$$|T| := \frac{1}{2}(M_{a,a^*} + M_{b^*,b}).$$

Let $u \in \mathcal{U}(\mathcal{A})$. Then $u \cdot a, b \cdot u^*$ are suitable for $u \cdot T \cdot u^*$ with

$$|u \cdot T \cdot u^*| = u \cdot |T| \cdot u^*,$$

so that

$$\|u \cdot |T| \cdot u^* - |T|\|_{cb} \leq \|u \cdot T \cdot u^* - T\|_{cb}.$$
A von Neumann algebra $M \subset B(H)$ is called injective if there is a norm one projection $C: B(H) \rightarrow M'$.

Theorem

Let $id_H \in A \subset B(H)$ be pseudo-amenable C^*-algebra. Then A' is injective.

Proof.

Let $(T_\alpha)_{\alpha \in A} \in A \subset \ell^A(B(H))$ such that $T_\alpha(id_H) = id_H$ ($\alpha \in A$) and $u \cdot T_\alpha \cdot u^* - T_\alpha \rightarrow 0$ ($u \in U(A)$).
A von Neumann algebra $M \subset B(H)$ is called injective if there is a norm one projection $C : B(H) \to M'$.

Theorem

Let $id_H \in A \subset B(H)$ be pseudo-amenable C^*-algebra. Then A' is injective.

Proof.

Let $(T_\alpha)_{\alpha \in A} \in A \subset E_{\ell A}(B(H))$ such that $T_\alpha(id_H) = id_H$ and $u \cdot T_\alpha(u)^* - T_\alpha \to 0$ ($u \in U(A)$).
GNoA’s for C^*-algebras, IV

Definition

A von Neumann algebra $M \subset B(H)$
A von Neumann algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is called injective.
Definition

A von Neumann algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is called \textit{injective} if there is a norm one projection $\mathcal{C} : \mathcal{B}(\mathcal{H}) \to \mathcal{M}'$.
GNoA’s for C^*-algebras, IV

Definition
A von Neumann algebra $M \subset B(H)$ is called **injective** if there is a norm one projection $C : B(H) \to M'$.

Theorem

Let $id_H \in A \subset B(H)$ be pseudo-amenable C^*-algebra. Then A' is injective.

Proof. Let $(T_\alpha)_{\alpha \in A} \in A \subset E\ell A(B(H))$ such that $T_\alpha(id_H) = id_H$ $(\alpha \in A)$ and $u \cdot T_\alpha \cdot u^* - T_\alpha \to 0$ $(u \in U(A))$.

Advertisements
Definition
A von Neumann algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is called **injective** if there is a norm one projection $\mathcal{C} : \mathcal{B}(\mathcal{H}) \to \mathcal{M}'$.

Theorem
Let $\text{id}_\mathcal{H} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be pseudo-amenable C^-algebra.*
GNoA’s for C^*-algebras, IV

Definition

A von Neumann algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is called **injective** if there is a norm one projection $C : \mathcal{B}(\mathcal{H}) \to \mathcal{M}'$.

Theorem

Let $\text{id}_\mathcal{H} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be pseudo-amenable C^*-algebra. Then \mathcal{A}' is injective.
Definition

A von Neumann algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is called injective if there is a norm one projection $C : \mathcal{B}(\mathcal{H}) \to \mathcal{M}'$.

Theorem

Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be pseudo-amenable C^*-algebra. Then \mathcal{A}' is injective.

Proof.
A von Neumann algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is called **injective** if there is a norm one projection $C : \mathcal{B}(\mathcal{H}) \to \mathcal{M}'$.

Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be pseudo-amenable C^*-algebra. Then \mathcal{A}' is injective.

Let $(T_\alpha)_{\alpha \in \mathcal{A}} \subset \mathcal{E}_\mathcal{A}(\mathcal{B}(\mathcal{H}))$
Definition

A von Neumann algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is called \textit{injective} if there is a norm one projection $C : \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{M}'$.

Theorem

Let $\text{id}_\mathcal{H} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be pseudo-amenable C^*-algebra. Then \mathcal{A}' is injective.

Proof.

Let $(T_\alpha)_{\alpha \in \mathcal{A}} \subset \mathcal{E}l_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))$ such that
Definition

A von Neumann algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is called injective if there is a norm one projection $C : \mathcal{B}(\mathcal{H}) \to \mathcal{M}'$.

Theorem

Let $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be pseudo-amenable C^*-algebra. Then \mathcal{A}' is injective.

Proof.

Let $(T_\alpha)_{\alpha \in \mathcal{A}} \subset \mathcal{E}_\mathcal{A}(\mathcal{B}(\mathcal{H}))$ such that

$$T_\alpha(\text{id}_{\mathcal{H}}) = \text{id}_{\mathcal{H}} \quad (\alpha \in \mathcal{A})$$
Definition

A von Neumann algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is called **injective** if there is a norm one projection $C : \mathcal{B}(\mathcal{H}) \to \mathcal{M}'$.

Theorem

Let $\text{id}_\mathcal{H} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be pseudo-amenable C^*-algebra. Then \mathcal{A}' is injective.

Proof.

Let $(T_\alpha)_{\alpha \in \mathcal{A}} \subset \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))$ such that

$$T_\alpha(\text{id}_\mathcal{H}) = \text{id}_\mathcal{H} \quad (\alpha \in \mathcal{A})$$

and

$$u \cdot T_\alpha \cdot u^* - T_\alpha \to 0 \quad (u \in \mathcal{U}(\mathcal{A})).$$
Choose a corresponding net \((|T_\alpha|)\alpha\in A \subset E \ell A(B(H))\) of Wittstock moduli such that \(|T_\alpha| (\text{id}_H) = \|T_\alpha\|_{cb} \text{id}_H(\alpha \in A)\) and \(u \cdot |T_\alpha| \cdot u^* - |T_\alpha| \to 0\) \((u \in \mathbb{U}(A))\).

Let \(U\) be an ultrafilter over \(A\) that dominates the order filter. Define \(E : B(H) \to B(H), x \mapsto \lim\limits_{\alpha \to U} \|T_\alpha\| |T_\alpha| (x)\).

The \(\|E\| = 1\), \(E|A = \text{id}_A\)', and \(E(B(H)) \subset A'\).
Proof (continued).

Choose a corresponding net \((|T_\alpha|)\alpha \in A \subset E_\ell(A)(B(H))\) of Wittstock moduli such that \(|T_\alpha| (id_H) = \|T_\alpha\|_{cb} id_H\) and

\[u \cdot |T_\alpha| \cdot u^* \to 0 \quad (u \in U(A)).\]

Let \(U\) be an ultrafilter over \(A\) that dominates the order filter. Define \(E : B(H) \to B(H), x \mapsto \limsup_{\alpha \to U} 1_{|T_\alpha|} \|T_\alpha\| x\). The \(\|E\| = 1\), \(E|A' = id_{A'}\), and \(E(B(H)) \subset A'\).
Proof (continued).

Choose a corresponding net \((|T_\alpha|)_{\alpha \in A} \subset \text{Ell}_\mathbb{A}(B(H))\) of Wittstock moduli
Proof (continued).

Choose a corresponding net \((|T_\alpha|)_{\alpha \in A} \subset \mathcal{E}_\mathfrak{A}(\mathcal{B}(\mathcal{H}))\) of Wittstock moduli such that
Proof (continued).

Choose a corresponding net \((|T_\alpha|)_{\alpha \in \mathbb{A}} \subset \mathcal{E}_{\mathbb{A}}(\mathcal{B}(\mathcal{H}))\) of Wittstock moduli such that

\[
|T_\alpha|(id_{\mathcal{H}}) = \|T_\alpha\|_{cb} \text{id}_{\mathcal{H}} \quad (\alpha \in \mathbb{A})
\]
Proof (continued).

Choose a corresponding net \(|T_\alpha|\)\(\alpha \in \mathbb{A}\) \(\subset \mathcal{EL}_\mathbb{A}(\mathcal{B}(\mathcal{H}))\) of Wittstock moduli such that

\[|T_\alpha|(\text{id}_\mathcal{H}) = \|T_\alpha\|_{\text{cb}} \text{id}_\mathcal{H} \quad (\alpha \in \mathbb{A}) \]

and

\[u \cdot |T_\alpha| \cdot u^* - |T_\alpha| \rightarrow 0 \quad (u \in \mathcal{U}(\mathbb{A})). \]
Choose a corresponding net \((| T_\alpha |)_{\alpha \in A} \subset \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H})) \) of Wittstock moduli such that
\[
| T_\alpha |(\text{id}_{\mathcal{H}}) = \| T_\alpha \|_{\text{cb}} \text{id}_{\mathcal{H}} \quad (\alpha \in A)
\]
and
\[
u \cdot | T_\alpha | \cdot u^* - | T_\alpha | \to 0 \quad (u \in \mathcal{U}(\mathcal{A})).
\]
Let \(\mathcal{U} \) be an ultrafilter over \(A \).
Proof (continued).

Choose a corresponding net \((|T_\alpha|)_{\alpha \in \mathbb{A}} \subset \mathcal{E}_{\mathbb{A}}(\mathcal{B}(\mathcal{H}))\) of Wittstock moduli such that

\[
|T_\alpha|(id_{\mathcal{H}}) = \|T_\alpha\|_{cb} id_{\mathcal{H}} \quad (\alpha \in \mathbb{A})
\]

and

\[
u \cdot |T_\alpha| \cdot u^* - |T_\alpha| \to 0 \quad (u \in \mathcal{U}(\mathcal{A})).
\]

Let \(\mathcal{U}\) be an ultrafilter over \(\mathbb{A}\) that dominates the order filter.
Proof (continued).

Choose a corresponding net \(|T_\alpha|\)_{\alpha \in \mathbb{A}} \subseteq \mathcal{E}_\mathbb{A}(\mathbb{B}(\mathcal{H})) of Wittstock moduli such that

\[|T_\alpha|(\text{id}_\mathcal{H}) = \|T_\alpha\|_{cb} \text{id}_\mathcal{H} \quad (\alpha \in \mathbb{A}) \]

and

\[u \cdot |T_\alpha| \cdot u^* - |T_\alpha| \to 0 \quad (u \in \mathcal{U}(\mathbb{A})). \]

Let \(\mathcal{U} \) be an ultrafilter over \(\mathbb{A} \) that dominates the order filter. Define

\[\mathcal{E} : \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H}), \quad x \mapsto \text{WOT-} \lim_{\alpha \to \mathcal{U}} \frac{1}{\|T_\alpha\|} |T_\alpha|(x). \]
Proof (continued).

Choose a corresponding net \((|T_\alpha|)_{\alpha \in A} \subset \mathcal{E}_{\mathcal{A}}(\mathcal{B}(\mathcal{H}))\) of Wittstock moduli such that

\[
|T_\alpha|(\text{id}_{\mathcal{H}}) = \|T_\alpha\|_{\text{cb}} \text{id}_{\mathcal{H}} \quad (\alpha \in A)
\]

and

\[
u \cdot |T_\alpha| \cdot u^* - |T_\alpha| \to 0 \quad (u \in \mathcal{U}(\mathcal{A})).
\]

Let \(\mathcal{U}\) be an ultrafilter over \(A\) that dominates the order filter. Define

\[
\mathcal{E} : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H}), \quad x \mapsto \text{WOT- lim}_{\alpha \to \mathcal{U}} \frac{1}{\|T_\alpha\|} |T_\alpha|(x).
\]

The \(\|\mathcal{E}\| = 1\),
Proof (continued).

Choose a corresponding net \((|T_\alpha|)_{\alpha \in A} \subset \mathcal{E}_\mathcal{A}(B(\mathcal{H}))\) of Wittstock moduli such that

\[
|T_\alpha|(id_{\mathcal{H}}) = \|T_\alpha\|_{cb} id_{\mathcal{H}} \quad (\alpha \in A)
\]

and

\[
u \cdot |T_\alpha| \cdot u^* - |T_\alpha| \to 0 \quad (u \in \mathcal{U}(A)).
\]

Let \(\mathcal{U}\) be an ultrafilter over \(A\) that dominates the order filter. Define

\[
\mathcal{E} : B(\mathcal{H}) \to B(\mathcal{H}), \quad x \mapsto \text{WOT- lim}_{\alpha \to \mathcal{U}} \frac{1}{\|T_\alpha\|} |T_\alpha|(x).
\]

The \(\|\mathcal{E}\| = 1, \mathcal{E}|_{\mathcal{U}'} = \text{id}_{\mathcal{U}'}\).
Proof (continued).

Choose a corresponding net \((|T_\alpha|)_{\alpha \in \mathbb{A}} \subset \mathcal{E}_\mathbb{A}(\mathcal{B}(\mathcal{H}))\) of Wittstock moduli such that

\[|T_\alpha|(id_\mathcal{H}) = \|T_\alpha\|_{cb} id_\mathcal{H} \quad (\alpha \in \mathbb{A}) \]

and

\[u \cdot |T_\alpha| \cdot u^* - |T_\alpha| \to 0 \quad (u \in \mathcal{U}(\mathbb{A})). \]

Let \(\mathcal{U}\) be an ultrafilter over \(\mathbb{A}\) that dominates the order filter. Define

\[\mathcal{E}: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H}), \quad x \mapsto \text{WOT- lim}_{\alpha \to \mathcal{U}} \frac{1}{\|T_\alpha\|} |T_\alpha|(x). \]

The \(\|\mathcal{E}\| = 1\), \(\mathcal{E}|_{\mathcal{W}'} = \text{id}_{\mathcal{W}'}\), and \(\mathcal{E}(\mathcal{B}(\mathcal{H})) \subset \mathcal{W}'\).
GNoA’s for C^*-algebras, VI

1. A is approximately amenable;
2. A is pseudo-amenable;
3. A is amenable.

Proof of 2. \Rightarrow 3.

WLOG: A is unital.

Via universal representation, we can suppose that $\text{id}_H \in A \subset B(H)$ such that $A^{\ast\ast} \sim_\varepsilon A''$. Hence, $A^{\ast\ast}$ is injective.
The following are equivalent for a C*-algebra A:

1. A is approximately amenable;
2. A is pseudo-amenable;
3. A is amenable.

Proof of 2. \Rightarrow 3.

WLOG: A is unital. Via universal representation, we can suppose that $\text{id}_H \in A \subset B(H)$ such that $A^{**} \sim = A''$. Hence, A^{**} is injective.
Corollary

The following are equivalent for a C^*-algebra \mathcal{A}:

1. \mathcal{A} is approximately amenable;
2. \mathcal{A} is pseudo-amenable;
3. \mathcal{A} is amenable.

Proof of 2. \Rightarrow 3.

WLOG: \mathcal{A} is unital.

Via universal representation, we can suppose that $\text{id}_H \in \mathcal{A} \subset B(H)$ such that $\mathcal{A}^{**} \sim = A''$. Hence, \mathcal{A}^{**} is injective.
Corollary

The following are equivalent for a C^*-algebra \mathcal{A}:

1. \mathcal{A} is approximately amenable;

Proof of $2. \Rightarrow 3.$

WLOG: \mathcal{A} is unital.

Via universal representation, we can suppose that $id_H \in \mathcal{A} \subset B(H)$ such that $\mathcal{A}^{\ast\ast} \sim = \mathcal{A}''$.

Hence, $\mathcal{A}^{\ast\ast}$ is injective.
The following are equivalent for a C^*-algebra \mathcal{A}:

1. \mathcal{A} is approximately amenable;
2. \mathcal{A} is pseudo-amenable;
Corollary

The following are equivalent for a C^*-algebra \mathcal{A}:

1. \mathcal{A} is approximately amenable;
2. \mathcal{A} is pseudo-amenable;
3. \mathcal{A} is amenable.
GNoA’s for C^*-algebras, VI

Corollary

The following are equivalent for a C^*-algebra \mathbb{A}:

1. \mathbb{A} is approximately amenable;
2. \mathbb{A} is pseudo-amenable;
3. \mathbb{A} is amenable.

Proof of 2. \implies 3.

WLOG: \mathbb{A} is unital.
Corollary

The following are equivalent for a C*-algebra \mathcal{A}:

1. \mathcal{A} is approximately amenable;
2. \mathcal{A} is pseudo-amenable;
3. \mathcal{A} is amenable.

Proof of 2. \implies 3.

WLOG: \mathcal{A} is unital. Via universal representation,
Corollary

The following are equivalent for a C^*-algebra \mathcal{A}:

1. \mathcal{A} is approximately amenable;
2. \mathcal{A} is pseudo-amenable;
3. \mathcal{A} is amenable.

Proof of 2. \implies 3.

WLOG: \mathcal{A} is unital. Via universal representation, we can suppose that $\text{id}_{\mathcal{H}} \in \mathcal{A} \subset \mathcal{B}(\mathcal{H})$
Corollary

The following are equivalent for a C^*-algebra A:

1. A is approximately amenable;
2. A is pseudo-amenable;
3. A is amenable.

Proof of 2. \implies 3.

WLOG: A is unital. Via universal representation, we can suppose that $id_{\mathcal{H}} \in A \subset B(\mathcal{H})$ such that $A^{**} \cong A''$.
Corollary

The following are equivalent for a C^*-algebra \mathcal{A}:

1. \mathcal{A} is approximately amenable;
2. \mathcal{A} is pseudo-amenable;
3. \mathcal{A} is amenable.

Proof of 2. \implies 3.

WLOG: \mathcal{A} is unital. Via universal representation, we can suppose that $\text{id}_H \in \mathcal{A} \subset B(H)$ such that $\mathcal{A}^{**} \cong \mathcal{A}''$. Hence, \mathcal{A}^{**} is injective.
Canadian Abstract Harmonic Analysis Symposium (CAHAS) 2020
Canadian Abstract Harmonic Analysis Symposium (CAHAS) 2020
In the honor of Anthony To-Ming Lau
Canadian Abstract Harmonic Analysis Symposium (CAHAS) 2020

In the honor of Anthony To-Ming Lau
on the occasion of his retirement
Canadian Abstract Harmonic Analysis Symposium (CAHAS) 2020

In the honor of Anthony To-Ming Lau

on the occasion of his retirement

Organizers:
Wittstock moduli of elementary operators and their application to generalized notions of amenability

Volker Runde

Wittstock moduli of elementary operators

Generalized notions of amenability

Paulsen’s off-diagonal technique

Conclusion

Advertisements

Advertisement I

Canadian Abstract Harmonic Analysis Symposium (CAHAS) 2020

In the honor of Anthony To-Ming Lau on the occasion of his retirement

Organizers:

Brian E. Forrest,
Canadian Abstract Harmonic Analysis Symposium (CAHAS) 2020

In the honor of Anthony To-Ming Lau on the occasion of his retirement

Organizers:
Brian E. Forrest, Volker Runde,
Canadian Abstract Harmonic Analysis Symposium (CAHAS) 2020

In the honor of Anthony To-Ming Lau on the occasion of his retirement

Organizers:
Brian E. Forrest, Volker Runde, Keith F. Taylor
Canadian Abstract Harmonic Analysis Symposium (CAHAS) 2020

In the honor of Anthony To-Ming Lau
on the occasion of his retirement

Organizers:
Brian E. Forrest, Volker Runde, Keith F. Taylor

To be held as a two-day workshop at BIRS in May/June
Canadian Abstract Harmonic Analysis Symposium (CAHAS) 2020

In the honor of Anthony To-Ming Lau
on the occasion of his retirement

Organizers:
Brian E. Forrest, Volker Runde, Keith F. Taylor

To be held as a two-day workshop at BIRS in May/June
at a date yet TBA.
Wittstock moduli of elementary operators and their application to generalized notions of amenability

Volker Runde

Wittstock moduli of elementary operators

Generalized notions of amenability

Paulsen’s off-diagonal technique

Conclusion

Advertisements
Soon to come to a bookstore near you:
Soon to come to a bookstore near you: